Skip to main content

Detecting Structural Invariants in Biological Reaction Networks

  • Protocol
  • First Online:
Book cover Bacterial Molecular Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 804))

Abstract

The detection and analysis of structural invariants in cellular reaction networks is of central importance to achieve a more comprehensive understanding of metabolism. In this work, we review different kinds of structural invariants in reaction networks and their Petri net-based representation. In particular, we discuss invariants that can be obtained from the left and right null spaces of the stoichiometric matrix which correspond to conserved moieties (P-invariants) and elementary flux modes (EFMs, minimal T-invariants). While conserved moieties can be used to detect stoichiometric inconsistencies in reaction networks, EFMs correspond to a mathematically rigorous definition of the concept of a biochemical pathway. As outlined here, EFMs allow to devise strategies for strain improvement, to assess the robustness of metabolic networks subject to perturbations, and to analyze the information flow in regulatory and signaling networks. Another important aspect addressed by this review is the limitation of metabolic pathway analysis using EFMs to small or medium-scale reaction networks. We discuss two recently introduced approaches to circumvent these limitations. The first is an algorithm to enumerate a subset of EFMs in genome-scale metabolic networks starting from the EFM with the least number of reactions. The second approach, elementary flux pattern analysis, allows to analyze pathways through specific subsystems of genome-scale metabolic networks. In contrast to EFMs, elementary flux patterns much more accurately reflect the metabolic capabilities of a subsystem of metabolism as well as its integration into the entire system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuster S, Fell DA, Dandekar T, (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 18(3):326–332.

    Article  PubMed  CAS  Google Scholar 

  2. Palsson BØ. (2006) Systems BiologyProperties of Reconstructed Networks. Cambridge University Press, New York.

    Google Scholar 

  3. Price ND, Reed JL, Palsson BØ. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol, 2(11):886–897.

    Google Scholar 

  4. Feist AM, Palsson BØ. (2008) The growing scope of applications of genomescale metabolic reconstructions using Escherichia coli. Nat Biotechnol, 26(6):659–667.

    Google Scholar 

  5. Paley SM, Karp PD. (2002) Evaluation of computational metabolic-pathway predictions for Helicobacter pylori. Bioinformatics, 18(5):715–724.

    Article  PubMed  CAS  Google Scholar 

  6. Notebaart RA, Teusink B, Siezen RJ, Papp B. (2008) Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PLoS Comput Biol, 4:e26.

    Article  PubMed  Google Scholar 

  7. Lautenbach K. (1973) Exakte Bedingungen der Lebendigkeit für eineKlasse von Petri-Netzen (in German). GMD Report, 82.

    Google Scholar 

  8. Murata T. (1989) Petri nets: properties, analysis and applications. Proc IEEE, 77(4):541–580.

    Article  Google Scholar 

  9. Starke PH. (1990) Analyse von Petri-Netz-Modellen. Teubner Verlag, Leipzig.

    Google Scholar 

  10. Matsuno H, Doi A, Nagasaki M, Miyano S. (2000) Hybrid Petri net representation of gene regulatory network. Pac Symp Biocomput, 5:341–352.

    Google Scholar 

  11. Wu J, Voit E. (2009) Hybrid modeling in biochemical systems theory by means of functional Petri nets. J Bioinform Comput Biol, 7:107–134.

    Article  PubMed  CAS  Google Scholar 

  12. Hardy S, Robillard PN. (2004) Modeling and simulation of molecular biology systems using Petri nets: modeling goals of various approaches. J Bioinform Comput Biol, 2(4):595–613.

    Article  PubMed  CAS  Google Scholar 

  13. Chaouiya C. (2007) Petri net modelling of biological networks. Brief Bioinform, 8(4):210–219.

    Article  CAS  Google Scholar 

  14. Pfeiffer T, Sánchez-Valdenebro I, Nuño JC, Montero F, Schuster S. (1999) METATOOL: for studying metabolic networks. Bioinformatics, 15(3):251–257.

    Article  PubMed  CAS  Google Scholar 

  15. Schuster S, Dandekar T, Fell DA. (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol, 17(2):53–60.

    Article  PubMed  CAS  Google Scholar 

  16. Schilling CH, Letscher D, Palsson BØ. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol, 203(3):229–248.

    Google Scholar 

  17. Larhlimi A, Bockmayr A. (2009) A new constraint-based description of the steady-state flux cone of metabolic networks. Discrete Appl Math, 157(10):2257–2266.

    Article  Google Scholar 

  18. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BØ. (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol, 22(8):400–405.

    Google Scholar 

  19. Trinh CT, Wlaschin A, Srienc F. (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol, 81(5):813–826.

    Article  PubMed  CAS  Google Scholar 

  20. Carlson R, Fell D, Srienc F. (2002) Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol Bioeng, 79(2):121–134.

    Article  PubMed  CAS  Google Scholar 

  21. Trinh CT, Carlson R, Wlaschin A, Srienc F. (2006) Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab Eng, 8(6):628–638.

    Google Scholar 

  22. Schuster S. (2004) Metabolic Pathway Analysis in Biotechnology. In Metabolic Engineering in the Post Genomic Era. Edited by Kholodenko BN, Westerhoff HV, Horizon Scientific, Wymondham, 181–208.

    Google Scholar 

  23. de Graaf AA. (2000) Metabolic Flux Analysis of Corynebacterium glutamicum. In Bioreaction Engineering, Modelling and Control. Edited by Schügerl K, Springer, New York, 506–555.

    Google Scholar 

  24. Gayen K, Venkatesh KV. (2006) Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum. BMC Bioinformatics, 7:445.

    Article  PubMed  Google Scholar 

  25. Schuster S, von Kamp A, Pachkov M. (2007) Understanding the roadmap of metabolism by pathway analysis. Methods Mol Biol, 358:199–226.

    Article  PubMed  CAS  Google Scholar 

  26. Wittmann C, Weber J, Betiku E, Krömer J, Böhm D, Rinas U. (2007) Response of fluxome and metabolome to temperature-induced recombinantprotein synthesis in Escherichia coli. J Biotechnol, 132(4):375–384.

    Article  PubMed  CAS  Google Scholar 

  27. Kröomer JO, Wittmann C, Schröder H, Heinzle E. (2006) Metabolic pathway analysis for rational design of l-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng, 8(4):353–369.

    Article  Google Scholar 

  28. Çakir T, Tacer CS, Ülgen KO. (2004) Metabolic pathway analysis of enzymedeficient human red blood cells. Biosystems, 78(1–3):49–67.

    Article  PubMed  Google Scholar 

  29. Schuster S, Kenanov D. (2005) Adenine and adenosine salvage pathways in erythrocytes and the role of S-adenosylhomocysteine hydrolase. A theoretical study using elementary flux modes. FEBS J, 272(20):5278–5290.

    CAS  Google Scholar 

  30. Förster J, Gombert AK, Nielsen J. (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng, 79(7):703–712.

    Article  PubMed  Google Scholar 

  31. Pachkov M, Dandekar T, Korbel J, Bork P, Schuster S. (2007) Use of pathway analysis and genome context methods for functional genomics of Mycoplasma pneumoniae nucleotide metabolism. Gene, 396(2):215–225.

    Article  PubMed  CAS  Google Scholar 

  32. Liao JC, Hou SY, Chao YP. (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng, 52:129–140.

    Article  CAS  Google Scholar 

  33. Fischer E, Sauer U. (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem, 278(47):46446–46451.

    Article  PubMed  CAS  Google Scholar 

  34. Schuster S, Höfer T. (1991) Determining all extreme semi-positive conservation relations in chemical reaction systems: a test criterion for conservativity. J Chem Soc Faraday Trans, 87:2561–2566.

    Article  CAS  Google Scholar 

  35. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T. (2000) Structural analysis of metabolic networks: elementary flux Modes, analogy to Petri nets, and application to Mycoplasma pneumoniae. German Conference on Bioinformatics, 115–120.

    Google Scholar 

  36. Gevorgyan A, Poolman MG, Fell DA. (2008) Detection of stoichiometric inconsistencies in biomolecular models. Bioinformatics, 24(19):2245–2251.

    Article  PubMed  CAS  Google Scholar 

  37. Schuster S, Hilgetag C,Woods JH, Fell DA. (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol, 45(2):153–181.

    Article  PubMed  CAS  Google Scholar 

  38. Clarke BL. (1981) Complete set of steady states for the general stoichiometric dynamical system. J Chem Phys, 75(10):4970–4979.

    Article  CAS  Google Scholar 

  39. Hofestädt R. (1996) A Petri net application to model metabolic processes. Syst Anal Model Sim, 16(2):122.

    Google Scholar 

  40. Reddy VN, Liebman MN, Mavrovouniotis ML. (1996) Qualitative analysis of biochemical reaction systems. Comput Biol Med, 26:9–24.

    Article  PubMed  CAS  Google Scholar 

  41. Voss K, Heiner M, Koch I. (2003) Steady-state analysis of metabolic pathways using Petri nets. In Silico Biol, 3(3):367–387.

    PubMed  CAS  Google Scholar 

  42. Colom JM, Silva M. (1991) Convex Geometry and Semiflows in P/T Nets: A Comparative Study of Algorithms for Computation of Minimal P-semiflows. In APN 90: Proceedings on Advances in Petri nets 1990. Springer-Verlag, New York, 79–112.

    Google Scholar 

  43. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T. (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics, 18(2):351–361.

    Article  PubMed  CAS  Google Scholar 

  44. Sackmann A, Heiner M, Koch I. (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics, 7:482.

    Article  PubMed  Google Scholar 

  45. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD. (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res, 14(2):301–312.

    Article  PubMed  CAS  Google Scholar 

  46. Sackmann A, Formanowicz D, Formanowicz P, Koch I, Blazewicz J. (2007) An analysis of the Petri net based model of the human body iron homeostasis process. Comput Biol Chem, 31:1–10.

    Article  PubMed  CAS  Google Scholar 

  47. Kielbassa J, Bortfeldt R, Schuster S, Koch I. (2009) Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets. Comput Biol Chem, 33:46–61.

    Article  PubMed  CAS  Google Scholar 

  48. Klamt S, Saez-Rodriguez J, Gilles ED. (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol, 1:2.

    Article  PubMed  Google Scholar 

  49. Klamt S, Gilles ED. (2004) Minimal cut sets in biochemical reaction networks. Bioinformatics, 20(2):226–234.

    Article  PubMed  CAS  Google Scholar 

  50. Klamt S. (2006) Generalized concept of minimal cut sets in biochemical networks. Biosystems, 83(2–3):233–247.

    Article  PubMed  CAS  Google Scholar 

  51. Terzer M, Stelling J. (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics, 24(19):2229–2235.

    Article  PubMed  CAS  Google Scholar 

  52. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J. (2003) The Systems Biology Markup Language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19(4):524–531.

    Article  PubMed  CAS  Google Scholar 

  53. von Kamp A, Schuster S. (2006) Metatool 5.0: fast and exible elementary modes analysis. Bioinformatics, 22(15):1930–1931.

    Google Scholar 

  54. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H. (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS, 7(4):355–372.

    Article  PubMed  CAS  Google Scholar 

  55. Keating SM, Bornstein BJ, Finney A, Hucka M. (2006) SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics, 22(10):1275–1277.

    Article  PubMed  CAS  Google Scholar 

  56. Poolman MG. (2006): ScrumPy: metabolic modelling with Python. IEE Proc Syst Biol, 153(5):375–378.

    Article  PubMed  CAS  Google Scholar 

  57. Schwarz R, Liang C, Kaleta C, Kühnel M, Hoffmann E, Kuznetsov S, Hecker M, Griffiths G, Schuster S, Dandekar T. (2007) Integrated network reconstruction, visualization and analysis using YANAsquare. BMC Bioinformatics, 8:313.

    Article  Google Scholar 

  58. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36(Database issue):D480–D484.

    Google Scholar 

  59. Heiner M, Richter R, Schwarick M, Rohr C. (2008) Snoopy – a tool to design and execute graph-based formalisms. Petri Net Newsletter, 74:8–22.

    Google Scholar 

  60. Rohr C, Marwan W, Heiner M. (2010) Snoopy – a unifying Petri net framework to investigate biomolecular networks. Bioinformatics, 26(7):974–975.

    Google Scholar 

  61. Kitano H. (2004) Biological robustness. Nat Rev Genet, 5(11):826–837.

    Article  PubMed  CAS  Google Scholar 

  62. Wolf J, Becker-Weimann S, Heinrich R. (2005) Analysing the robustness of cellular rhythms. IEE Proc Syst Biol, 2:35–41.

    CAS  Google Scholar 

  63. Jacobsen EW, Cedersund G. (2008) Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils. IET Syst Biol, 2:39–47.

    Article  PubMed  CAS  Google Scholar 

  64. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature, 420(6912):190–193.

    Article  PubMed  CAS  Google Scholar 

  65. Wilhelm T, Behre J, Schuster S. (2004) Analysis of structural robustness of metabolic networks. IEE Proc Syst Biol, 1:114–120.

    CAS  Google Scholar 

  66. Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S. (2008) Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol, 252(3):433–441.

    Article  PubMed  CAS  Google Scholar 

  67. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accountsfor 1260 ORFs and thermodynamic information. Mol Syst Biol, 3:121.

    Article  PubMed  Google Scholar 

  68. Papin JA, Palsson BØ. (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol, 227(2):283–297.

    Google Scholar 

  69. Zevedei-Oancea I, Schuster S. (2005) A theoretical framework for detecting signal transfer routes in signalling networks. Comput Chem Eng, 29(3):597–617.

    Article  CAS  Google Scholar 

  70. Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED. (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics, 7:56.

    Article  PubMed  Google Scholar 

  71. Xiong M, Zhao J, Xiong H. (2004) Network-based regulatory pathways analysis. Bioinformatics, 20(13):2056–2066.

    Article  PubMed  CAS  Google Scholar 

  72. Behre J, Schuster S. (2009) Modeling signal transduction in enzyme cascades with the concept of elementary flux modes. J Comput Biol, 16(6):829–844.

    Article  PubMed  CAS  Google Scholar 

  73. Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BØ. (2006) Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput Biol, 2(8 e101):0902–0917.

    Google Scholar 

  74. Varma A, Palsson BØ. (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology, 12(10):994–998.

    Google Scholar 

  75. Acuña V, Marchetti-Spaccamela A, Sagot MF, Stougie L. (2010) A note on the complexity of finding and enumerating elementary modes. Biosystems, 99(3):210–214.

    Article  Google Scholar 

  76. de Figueiredo LF, Podhorski A, Rubio A, Beasley JE, Schuster S, Planes FJ. (2009) Calculating the K-Shortest Elementary Flux Modes in Metabolic Networks. In Proceedings of the MATHMOD 2009 in Vienna. Edited by Troch I, Breitenecker F, 736–747.

    Google Scholar 

  77. Dandekar T, Moldenhauer F, Bulik S, Bertram H, Schuster S. (2003) A method for classifying metabolites in topological pathway analyses based on minimization of pathway number. Biosystems, 70(3):255–270.

    Article  PubMed  CAS  Google Scholar 

  78. Schwartz JM, Gaugain C, Nacher J, de Daruvar A, Kanehisa M. (2007) Observing metabolic functions at the genome scale. Genome Biol, 8(6):R123.

    Article  PubMed  Google Scholar 

  79. Kaleta C, de Figueiredo LF, Schuster S. (2009) Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res, 19(10):1872–1883.

    Article  PubMed  CAS  Google Scholar 

  80. Oh MK, Rohlin L, Kao KC, Liao JC. (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem, 277(15):13175–13183.

    Article  PubMed  CAS  Google Scholar 

  81. Croes D, Couche F, Wodak SJ, van Helden J. (2006) Inferring meaningful pathways in weighted metabolic networks. J Mol Biol, 356:222–236.

    Article  PubMed  CAS  Google Scholar 

  82. Planes FJ, Beasley JE. (2009) Path finding approaches and metabolic pathways. Discrete Appl Math, 157(10):2244–2256.

    Article  Google Scholar 

  83. de Figueiredo LF, Schuster S, Kaleta C, Fell DA. (2009) Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics, 25:152–158.

    Article  PubMed  Google Scholar 

  84. Kacser H, Acerenza L. (1993) A universal method for achieving increases in metabolite production. Eur J Biochem, 216(2):361–367.

    Article  PubMed  CAS  Google Scholar 

  85. Niederberger P, Prasad R, Miozzari G, Kacser H. (1992) A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J, 287(Pt 2):473–479.

    CAS  Google Scholar 

  86. Meléndez-Hevia E, Waddell TG, Montero F. (1994) Optimization of metabolism: the evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J Theor Biol, 166(2):201–220.

    Article  Google Scholar 

  87. Wu WH, Morris DR. (1973) Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J Biol Chem, 248(5):1687–1695.

    CAS  Google Scholar 

  88. Blethen SL, Boeker EA, Snell EE. (1968) Argenine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J Biol Chem, 243(8):1671–1677.

    CAS  Google Scholar 

  89. Schuster S, Klamt S, Weckwerth W, Pfeiffer T. (2002) Use of network analysis of metabolic systems in bioengineering. Bioproc Biosyst Eng, 24:363–372.

    Article  CAS  Google Scholar 

  90. Reed JL, Palsson BØ. (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res, 14(9):1797–1805.

    Google Scholar 

Download references

Acknowledgments

We thank Ines Heiland for the reconstruction of the medium-scale model of arginine metabolism in E. coli and for valuable discussions. Financial support from the German Ministry for Research and Education (BMBF) to C.K. and J.B. within the frameworks of the Forsys Partner initiative and the HepatoSys project, respectively, and from the Fundação Calouste Gulbenkian, Fundação para a Ciência e a Tecnologia (FCT) and Siemens SA Portugal (PhD grant SFRH/BD/32961/2006) to L.F.F. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kaleta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Behre, J., de Figueiredo, L.F., Schuster, S., Kaleta, C. (2012). Detecting Structural Invariants in Biological Reaction Networks. In: van Helden, J., Toussaint, A., Thieffry, D. (eds) Bacterial Molecular Networks. Methods in Molecular Biology, vol 804. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-361-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-361-5_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-360-8

  • Online ISBN: 978-1-61779-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics