Skip to main content

In Silico Design of Small Molecules

  • Protocol
  • First Online:
Chemical Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 800))

Abstract

Computational methods now play an integral role in modern drug discovery, and include the design and management of small molecule libraries, initial hit identification through virtual screening, optimization of the affinity and selectivity of hits, and improving the physicochemical properties of the lead compounds. In this chapter, we survey the most important data sources for the discovery of new molecular entities, and discuss the key considerations and guidelines for virtual chemical library design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11:580–594

    Article  PubMed  CAS  Google Scholar 

  2. Olah M, Mracec M, Ostopovici L et al (2004) WOMBAT: world of molecular bioactivity. In: Oprea TI (ed) Chemoinformatics in drug discovery, Wiley-VCH, New York

    Google Scholar 

  3. Goto S, Okuno Y, Hattori M et al (2002) LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 30:402–404

    Article  PubMed  CAS  Google Scholar 

  4. Irwin JJ, Shoichet BK (2004) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  Google Scholar 

  5. Wishart DS, Knox C, Guo AC et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–672

    Article  PubMed  CAS  Google Scholar 

  6. Chen J, Swamidass SJ, Dou Y et al (2005) ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21:4133–4139

    Article  PubMed  CAS  Google Scholar 

  7. Jónsdóttir SO, Jørgensen FS, Brunak S (2005) Prediction methods and databases within chemoinformatics: emphasis on drugs and drug candidates. Bioinformatics 21:2145–2160

    Article  PubMed  Google Scholar 

  8. Agrafiotis DK, Lobanov VS, Salemme FR (2002) Combinatorial informatics in the post-genomics era. Nat Rev Drug Discov 1:337–346

    Article  PubMed  CAS  Google Scholar 

  9. Leland BA, Christie BD, Nourse JG et al (1997) Managing the combinatorial expansion. J Chem Inf Comput Sci 37:62–70

    Article  CAS  Google Scholar 

  10. Leach AR, Bradshaw J, Green DVS et al (1999) Implementation of a system for reagent selection and library enumeration, profiling and design. J Chem Inf Comput Sci 39:1161–1172

    Article  PubMed  CAS  Google Scholar 

  11. Lobanov VS, Agrafiotis DK (2002) Scalable methods for the construction and analysis of virtual combinatorial libraries. Combin Chem High-Throughput Screen 5:167–178

    CAS  Google Scholar 

  12. Livingston DJ (2000) The characterization of molecular structures using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209

    Article  Google Scholar 

  13. Brown RD, Hassan M, Waldman M (2000) Combinatorial library design for diversity, cost efficiency, and drug-like character. J Mol Graph Model 18:427–437

    Article  PubMed  CAS  Google Scholar 

  14. O’Donovan C, Apweiler R, Bairoch A (2001) The human proteomics initiative (HPI). Trends Biotechnol 19:178–181

    Article  PubMed  Google Scholar 

  15. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modelling perspective. Med Res Rev 16:3–50

    Article  PubMed  CAS  Google Scholar 

  16. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol 44:235–249

    Article  CAS  Google Scholar 

  17. Hou T, Wang J, Zhang W et al (2006) Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem 13:2653–2667

    Article  PubMed  CAS  Google Scholar 

  18. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68

    Article  PubMed  CAS  Google Scholar 

  19. Oprea T (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14:251–264

    Article  PubMed  CAS  Google Scholar 

  20. Wenlock MC, Austin RP, Barton P et al (2003) A comparison of physicochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256

    Article  PubMed  CAS  Google Scholar 

  21. Congreve M, Carr R, Murray C et al (2003) A “rule of three” for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  22. Song CM, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591

    Article  PubMed  CAS  Google Scholar 

  23. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19:3181–3184

    Article  Google Scholar 

  24. Cornell WD, Cieplak P et al (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am Chem Soc 117: 5179–5197

    Article  CAS  Google Scholar 

  25. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 17:490–519

    Article  CAS  Google Scholar 

  26. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  PubMed  CAS  Google Scholar 

  27. Baell JB, Holloway GA (2010) New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J Med Chem 53:2719–2740

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Chuan Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bernardo, P.H., Tong, J.C. (2012). In Silico Design of Small Molecules. In: Zanders, E. (eds) Chemical Genomics and Proteomics. Methods in Molecular Biology, vol 800. Humana Press. https://doi.org/10.1007/978-1-61779-349-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-349-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-348-6

  • Online ISBN: 978-1-61779-349-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics