Skip to main content

Techniques to Measure Pilus Retraction Forces

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 799))

Abstract

The importance of physical forces in biology is becoming more appreciated. Neisseria gonorrhoeaehas become a paradigm for the study of physical forces in the bacterial world. Cycles of elongations and retractions of Type IV pili enables N. gonorrhoeaebacteria to exert forces on its environment, forces that play major roles in the life cycle of this pathogen. In order to better understand the role of these forces, there is a need to fully characterize them. Here, we present two different techniques, optical tweezers and Polyacrylamide MicroPillars (PoMPs), for measuring pilus retraction forces. Initially designed for N. gonorrhoeae, these assays can be readily modified to study other pilus-bearing bacteria including Neisseria meningitidis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mattick JS (2002) Type IV pili and twitching motility. Ann Rev of Microbiol 56: 289–314.

    Article  CAS  Google Scholar 

  2. Hagblom P, Segal E, Billyard E et al (1985) Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156–158.

    Article  CAS  Google Scholar 

  3. Aas FE, Egge-Jacobsen W, Winther-Larsen HC et al (2006) Neisseria gonorrhoeaetype IV pili undergo multisite, hierarchical modifications with phosphoethanolamine and phosphocholine requiring an enzyme structurally related to lipopolysaccharide phosphoethanolamine transferases. J Biol Chem 281: 27712–27723.

    Article  CAS  Google Scholar 

  4. Brown DR, Helaine S, Carbonnelle E et al (2010) Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by Type IV Pili in Neisseria meningitidis. Infect Immun 78: 3053–3063.

    Article  CAS  Google Scholar 

  5. Farge E (2003) Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Current Biol 13: 1365–1377.

    Article  CAS  Google Scholar 

  6. Gilbert PM, Havenstrite KL, Magnusson KEG et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329: 1078–1081.

    Article  CAS  Google Scholar 

  7. Zhang XH, Halvorsen K, Zhang CZ et al (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand Factor. Science 324: 1330–1334.

    Article  CAS  Google Scholar 

  8. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689.

    Article  CAS  Google Scholar 

  9. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407: 98–102.

    Article  CAS  Google Scholar 

  10. Maier B, Potter L, So M et al (2002) Single pilus motor forces exceed 100 pN. Proc Nat Acad Sci USA 99: 16012–16017.

    Article  CAS  Google Scholar 

  11. Biais N, Ladoux B, Higashi D et al (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. Plos Biol 6: 907–913.

    Article  CAS  Google Scholar 

  12. Higashi DL, Zhang GH, Biais N et al (2009) Influence of type IV pilus retraction on the architecture of the Neisseria gonorrhoeae-infected cell cortex. Microbiol-SGM 155: 4084–4092.

    Article  CAS  Google Scholar 

  13. Howie HL, Glogauer M, So M (2005) The N.gonorrhoeaetype IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. Plos Biol 3: 627–637.

    Article  CAS  Google Scholar 

  14. Sterba Re, Sheetz MP (1997) Basic laser tweezers. Meth Cell Biol 55: 29–41.

    Article  Google Scholar 

  15. McGee-Russell SM, Allen RD (1971) Reversible stabilization of labile microtubules in the reticulopodial network of Allogromia. Adv Cell Molec Biol 1: 153.

    Google Scholar 

  16. du Roure O, Saez A, Buguin A et al (2005) Force mapping in epithelial cell migration. Proc Nat Acad Sci USA 102: 2390–2395.

    Article  Google Scholar 

  17. Ghassemi S, Biais N, Maniura K et al (2008) Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements. J Vac Sci Technol B 26: 2549–2553.

    Article  CAS  Google Scholar 

  18. Tanase M, Biais N, Sheetz M (2007) Magnetic tweezers in cell biology. Meth Cell Biol 83: 473–493.

    Article  CAS  Google Scholar 

  19. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24: 156–&.

    Article  CAS  Google Scholar 

  20. Simmons RM, Finer JT, Chu S et al (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70: 1813–1822.

    Article  CAS  Google Scholar 

  21. Clausen M, Koomey M, Maier B (2009) Dynamics of Type IV Pili is controlled by switching between multiple states. Biophys J 96: 1169–1177.

    Article  CAS  Google Scholar 

  22. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331: 450–453.

    Article  CAS  Google Scholar 

  23. Tan JL, Tien J, Pirone DM et al (2003) Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Nat Acad Sci USA 100: 1484–1489.

    Article  CAS  Google Scholar 

  24. Wang YL, Pelham RJ (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Meth Enzymol 298: 489–496.

    Article  CAS  Google Scholar 

  25. Kandow CE, Georges PC, Janmey PA et al (2007) Polyacrylamidc hydrogels for cell mechanics: Steps toward optimization and alternative uses. Cell Mech 83: 29–46.

    Article  CAS  Google Scholar 

  26. J.Happel, H.Brenner (1983) Low Reynolds number hydrodynamics with special applications to particulate media. Kluwer, Boston.

    Google Scholar 

Download references

Acknowledgments

N. B. and M. S. acknowledge the award of NIH grant AI079030. This work was also supported by the Agence Nationale de la Recherche (ANR) (Programme Blanc 2010 SVSE5 “MECANOCAD”) and the CNRS (Program Prise de Risques “Interface physique, biologie et chimie”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Biais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Biais, N., Higashi, D., So, M., Ladoux, B. (2012). Techniques to Measure Pilus Retraction Forces. In: Christodoulides, M. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 799. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-346-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-346-2_13

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-345-5

  • Online ISBN: 978-1-61779-346-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics