Skip to main content

Intron-Specific Neuropeptide Probes

  • Protocol
  • First Online:
Neuropeptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 789))

Abstract

Measurements of changes in pre-mRNA levels by intron-specific probes are generally accepted as more closely reflecting changes in gene transcription rates than are measurements of mRNA levels by exonic probes. This is, in part, because the pre-mRNAs, which include the primary transcript and various splicing intermediates located in the nucleus (also referred to as heteronuclear RNAs, or hnRNAs), are processed rapidly (with half-lives <60 min) as compared to neuropeptide mRNAs, which are then transferred to the cytoplasm and which have much longer half-lives (often over days). In this chapter, we describe the use of exon-and intron-specific probes to evaluate oxytocin (OT) and vasopressin (VP) neuropeptide gene expression by analyses of their mRNAs and hnRNAs by quantitative in situ hybridization (qISH) and also by using specific PCR primers in quantitative, real-time PCR (qPCR) procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audibert, A., Weil, D., and Dautry, F. (2002) In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell. Biol. 22: 6706–6718.

    Article  PubMed  CAS  Google Scholar 

  2. Clement, J.Q., Qian, L., Kaplinsky, N., and Wilkinson, M.F. (1999) The stability and fate of a spliced intron from vertebrate cells. RNA 5: 206–220.

    Article  PubMed  CAS  Google Scholar 

  3. Hargrove, J.L. (1993) Microcomputer-assisted kinetic modeling of mammalian gene expression. FASEB J. 7: 1163–1170.

    PubMed  CAS  Google Scholar 

  4. Perry, R.P., Bard, E., Hames, B.D., Kelly, D.E., and Schibler, U. (1976) The relationship between hnRNA and mRNA. Prog. Nucleic Acid Res. Mol. Biol. 19: 275–292.

    Article  PubMed  CAS  Google Scholar 

  5. Fremeau, R.T., Jr., Lundblad, J.R., Pritchett, D.B., Wilcox, J.N., and Roberts, J.L. (1986) Regulation of pro-opiomelanocortin gene transcription in individual cell nuclei. Science 234: 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  6. Fremeau, R.T., Jr., Autelitano, D.J, Blum, M., Wilcox, J., and Roberts, J.L. (1989) Intervening sequence-specific in situ hybridization: detection of the pro-opiomelanocortin gene primary transcript in individual neurons Brain Res. Mol. Brain Re.s 6: 197–201.

    Google Scholar 

  7. Chang, M.S., Hahn, M.K., Sved, A.F., Zigmond, M.J., Austin, M.C., and Sherman, T.G. (2000) Analysis of tyrosine hydroxylase gene transcription using an intron specific probe. J. Neurosci. Methods 94: 177–185.

    Article  PubMed  CAS  Google Scholar 

  8. Fox, C.A., Mansour, A., Thompson, R.C., Bunzow, J.R., Civelli, O., and Watson, S.J., Jr. (1993) The distribution of dopamine D2 receptor heteronuclear RNA (hnRNA) in the rat brain. J. Chem. Neuroanat. 6: 363–373.

    Article  PubMed  CAS  Google Scholar 

  9. Herman, J.P., Schafer, M.K., Watson, S.J., and Sherman, T.G. (1991) In situ hybridization analysis of arginine vasopressin gene transcription using intron-specific probes. Mol. Endocrinol. 5: 1447–1456.

    Google Scholar 

  10. Herman, J.P., Schafer, M.K., Thompson, R.C., and Watson, S.J. (1992) Rapid regulation of corticotropin-releasing hormone gene transcription in vivo. Mol. Endocrinol. 6: 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  11. Herman, J.P., and Spencer, R. (1998) Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. J. Neurosci. 18: 7462–7473.

    PubMed  CAS  Google Scholar 

  12. Kovacs, K.J., and Sawchenko, P.E. (1996) Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. J. Mol. Neurosci. 7: 125–133.

    Article  PubMed  CAS  Google Scholar 

  13. Ma, X.M., Levy, A., and Lightman, S.L. (1997) Rapid changes in heteronuclear RNA for corticotrophin-releasing hormone and arginine vasopressin in response to acute stress. J. Endocrinol. 152: 81–89.

    Article  PubMed  CAS  Google Scholar 

  14. Paskitti, M.E., McCreary, B.J., and Herman, J.P. (2000) Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: time-course analysis. Brain Res. Mol. Brain Res. 80: 142–152.

    Article  PubMed  CAS  Google Scholar 

  15. Rusnak, M., and Gainer, H. (2005) Differential effects of forskolin on tyrosine hydroxylase gene transcription in identified brainstem catecholaminergic neuronal subtypes in organotypic culture. Eur. J. Neurosci. 21: 889–898.

    Article  PubMed  Google Scholar 

  16. Brooks, P.J., Kaplitt, M.G., Kleopoulos, S.P., Funabashi, T., Mobbs, C.V., and Pfaff, D.W. (1993) Detection of messenger RNA and low-abundance heteronuclear RNA with single-stranded DNA probes produced by amplified primer extension labeling. J. Histochem. Cytochem. 41: 1761–1766.

    Article  PubMed  CAS  Google Scholar 

  17. Douglas, A.J., Meeren, H.K., Johnstone, L.E., Pfaff, D.W., Russell, J.A., and Brooks, P.J. (1998) Stimulation of expression of the oxytocin gene in rat supraoptic neurons at parturition. Brain Res. 782: 167–174.

    Article  PubMed  CAS  Google Scholar 

  18. Yue, C., Mutsuga, N., Scordalakes, E. M., and Gainer, H. (2006) Studies of oxytocin and vasopressin gene expression in the rat hypothalamus using exon- and intron-specific probes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290: R1233–1241.

    Article  PubMed  CAS  Google Scholar 

  19. Yue, C, Mutsuga, N, Sugimura, Y, Verbalis, J and Gainer, H. (2008) Differential kinetics of oxytocin and vasopressin heteronuclear RNA expression in the rat supraoptic nucleus in response to chronic salt loading in vivo, J. Neuroendocrinol., 20: 227–232.

    Article  PubMed  CAS  Google Scholar 

  20. Yue, C., Ponzio, T. A., Fields, R. L., Gainer, H., (2008) Oxytocin and vasopressin gene expression and RNA splicing patterns in the rat supraoptic nucleus. Physiol. Genomics 35: 231–242.

    Article  PubMed  CAS  Google Scholar 

  21. Ponzio, T. A., Yue, C., and Gainer, H.(2007) An intron-based real-time PCR method for measuring vasopressin gene transcription. J. Neurosci. Methods 164: 149–154.

    Article  PubMed  CAS  Google Scholar 

  22. Kawasaki, M. Ponzio, T, Yue, C, Fields, RL, and Gainer, H. (2009) Neurotransmitter regulation of c-fos and vasopressin gene expression in the rat supraoptic nucleus. Experimental Neurology 219: 212–222.

    Google Scholar 

  23. Young, W.S., 3rd, Mezey, E., and Siegel, R.E. (1986) Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: analysis by quantitative in situ hybridization histochemistry. Brain Res. 387: 231–241.

    PubMed  Google Scholar 

  24. Wacker, M.J. and Goddard, M.P. (2005) Analysis of one-step and two-step Real time PCR using superscript III J. Biomolecular Techniques 16: 266–271.

    Google Scholar 

  25. Wong, M.L., and Medrano, J.F. (2005) Real time PCR for mRNA quantitation. Biotechniques 39: 75–85.

    Article  PubMed  CAS  Google Scholar 

  26. Giegerich, R., Meyer, F., and Schleiermacher, C. (1996) GeneFisher – software support for the detection of postulated genes. Proc. Int. Conf. Intell. Syst. Mol. Biol. 4: 68–77.

    PubMed  CAS  Google Scholar 

  27. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  PubMed  CAS  Google Scholar 

  28. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45.

    Article  PubMed  CAS  Google Scholar 

  29. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  30. Willems, E., Leyns, L., and Vandesompele, J. (2008) Standardization of real-time PCR expression data from independent biological replicates. Anal. Biochem. 379: 127–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank various past and present members in our LNC, NINDS, NIH laboratory, Noriko Mutsuga, Ray Fields, Shirley House, Daniel Lubelski, and Madison Stevens, and colleagues in other NIH institutes, Eva Mezey, Sharon Key and Zuszanna Toth in the NICDR, and W. Scott Young in NIMH for their help in establishing the qISH and qPCR methods in our laboratory. This work was supported by the intramural program of the NIH, NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Gainer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gainer, H., Ponzio, T.A., Yue, C., Kawasaki, M. (2011). Intron-Specific Neuropeptide Probes. In: Merighi, A. (eds) Neuropeptides. Methods in Molecular Biology, vol 789. Humana Press. https://doi.org/10.1007/978-1-61779-310-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-310-3_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-309-7

  • Online ISBN: 978-1-61779-310-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics