Skip to main content

The Role of the Pedunculopontine Tegmental Nucleus in Motor Disorders

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 62))

Abstract

In this chapter, we discuss why the pedunculopontine is an appropriate target in studying movement disorders, explaining its association with both the pathology and treatment of Parkinsonism. We discuss how various laboratories, including our own, have approached experimental examination of the pedunculopontine and some of the findings that have emerged. These lead us finally to reflect on the nature of movement disorders and how they necessarily involve not just the control of musculature but additionally the complex cognitive processes of decision making – the processes that underlie not just “doing” but also “choosing” and how these are embedded deeper in brain than is often appreciated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    Article  PubMed  CAS  Google Scholar 

  2. Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. European Journal of Neuroscience 29:340–358

    Article  PubMed  Google Scholar 

  3. Rye DB (1997) Contributions of the pedunculopontine region to normal and altered REM sleep. Sleep 20:757–788

    PubMed  CAS  Google Scholar 

  4. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep State Switching. Neuron 68:1023–1042

    Article  PubMed  CAS  Google Scholar 

  5. Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250

    Article  PubMed  Google Scholar 

  6. Winn P, Wilson DIG, Redgrave P (2010) Subcortical Connections of the Basal Ganglia. In: Heinz S, Kuei YT (eds) Handbook of Behavioral Neuroscience. Elsevier, pp 397–408

    Google Scholar 

  7. Braak H, Del Tredici K, Rub U, de Vos RAI, Steur E, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging 24:197–211

    Article  PubMed  Google Scholar 

  8. Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Annals of Neurology 26:41–46

    Article  PubMed  CAS  Google Scholar 

  9. Lee MS, Rinne JO, Marsden CD (2000) The pedunculopontine nucleus: Its role in the genesis of movement disorders. Yonsei Medical Journal 41:167–184

    PubMed  CAS  Google Scholar 

  10. Rinne JO, Ma SY, et al. (2008) Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism & Related Disorders 14(7):553–557

    Article  Google Scholar 

  11. Orieux G, Francois C, Feger J, et al. (2000) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97:79–88

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs D, Sambrook MA, Crossman AR (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226

    Article  PubMed  CAS  Google Scholar 

  13. Carlson JD, Pearlstein RD, Buchholz J, Iacono RP, Maeda G (1999) Regional metabolic changes in the pedunculopontine nucleus of unilateral 6-hydroxydopamine Parkinson’s model rats. Brain Research 828:12–19

    Article  PubMed  CAS  Google Scholar 

  14. Hirsch EC, Graybiel AM, Duyckaerts C, Javoyagid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proceedings of the National Academy of Sciences of the United States of America 84:5976–5980

    Article  PubMed  CAS  Google Scholar 

  15. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of Neural Transmission

    Google Scholar 

  16. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783

    Article  PubMed  Google Scholar 

  17. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1881

    Article  PubMed  Google Scholar 

  18. Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16:1883–1887

    Article  PubMed  Google Scholar 

  19. Fahn S, Marsden, C.D., Calne D.B., Goldstein, M. (ed) (1987) Recent Developments in Parkinson’s Disease. Macmillian Health Care Information, Florham Park, NJ

    Google Scholar 

  20. Stefani A, Lozano AM, Peppe A, et al. (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607

    Article  PubMed  Google Scholar 

  21. Ballanger B, Lozano AM, Moro E, et al. (2009) Cerebral Blood Flow Changes Induced by Pedunculopontine Nucleus Stimulation in Patients With Advanced Parkinson’s Disease: A O-15 H2O PET Study. Human Brain Mapping

    Google Scholar 

  22. Lim AS, Moro E, Lozano AM, et al. (2009) Selective Enhancement of Rapid Eye Movement Sleep by Deep Brain Stimulation of the Human Pons. Annals of Neurology 66:110–114 doi: 10.1002/ana.21631

    Google Scholar 

  23. Yelnik J (2007) PPN or PPD, what is the target for deep brain stimulation in Parkinson’s disease? Brain 130:e79; author reply e80

    Google Scholar 

  24. Zrinzo L, Zrinzo LV, Hariz M (2007) The pedunculopontine and peripeduncular nuclei: a tale of two structures. Brain 130

    Google Scholar 

  25. Scarnati E (2010) The deep brain stimulation of the pedunculopontine tegmental nucleus: The (un)certainty of the stimulating site. Parkinsonism & Related Disorders 16:148–148

    Article  Google Scholar 

  26. Ferraye MU, Debu B, Fraix V, et al. (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214

    Article  PubMed  CAS  Google Scholar 

  27. Stefani A, Galati S, Pierantozzi M, et al. (2009) Motor and Non-motor Effects of PPN-DBS in PD Patients: Insights from Intra-operative Electrophysiology. In: Groenewegen HJ, Berendse HW, Cools AR, Voorn P, Mulder AB (eds) Basal Ganglia Ix. Springer, New York, pp 573–587

    Chapter  Google Scholar 

  28. Alessandro S, Ceravolo R, Brusa L, et al. (2010) Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: Focus on sleep and cognitive domains. Journal of the Neurological Sciences 289:44–48

    Article  PubMed  Google Scholar 

  29. Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Research Bulletin 18:731–738

    Article  PubMed  CAS  Google Scholar 

  30. Skinner RD, Kinjo N, Henderson V, Garcia-Rill E (1990) Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1:183–186

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Rill E (1986) The basal ganglia and the locomotor regions. Brain Res 396:47–63

    Article  PubMed  CAS  Google Scholar 

  32. Lai YY, Siegel JM (1990) Muscle tone suppression and stepping produced by stimulation of midbrain rostral pontine reticular-formation. Journal of Neuroscience 10:2727–2734

    PubMed  CAS  Google Scholar 

  33. Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF (2002) Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain 125:2418–2430

    Article  PubMed  Google Scholar 

  34. Kojima J, Yamaji Y, Matsumura M, et al. (1997) Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neuroscience Letters 226:111–114

    Article  PubMed  CAS  Google Scholar 

  35. Aziz TZ, Davies L, Stein J, France S (1998) The role of descending basal ganglia connections to the brain stem in Parkinsonian akinesia. British Journal of Neurosurgery 12:245–249

    Article  PubMed  CAS  Google Scholar 

  36. Munro-Davies LE, Winter J, Aziz TZ, Stein JF (1999) The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Experimental Brain Research 129:511–517

    Article  CAS  Google Scholar 

  37. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308

    Article  PubMed  CAS  Google Scholar 

  38. Shojania K, Livingston CA, Pylypas S, Jordan LM, Nance DM (1992) Descending projections of the mesencephalic locomotor region (MLR) based upon treadmill induced c-fos protein and anterograde tract tracing. Society for Neuroscience Abstracts 18:1410

    Google Scholar 

  39. Allen LF, Inglis WL, Winn P (1996) Is the cuneiform nucleus a critical component of the mesencephalic locomotor region? An examination of the effects of excitotoxic lesions of the cuneiform nucleus on spontaneous and nucleus accumbens induced locomotion. Brain Research Bulletin 41:201–210

    Article  PubMed  CAS  Google Scholar 

  40. Walker SC, Winn P (2007) An assessment of the contributions of the pedunculopontine tegmental and cuneiform nuclei to anxiety and neophobia. Neuroscience 150:273–290

    Article  PubMed  CAS  Google Scholar 

  41. Inglis WL, Dunbar JS, Winn P (1994) Outflow from the nucleus accumbens to the pedunculopontine tegmental nucleus: a dissociation between locomotor activity and the acquisition of responding for conditioned reinforcement stimulated by d-amphetamine. Neuroscience 62:51–64

    Article  PubMed  CAS  Google Scholar 

  42. Olmstead MC, Franklin KBJ (1994) Lesions of the pedunculopontine tegmental nucleus block drug-induced reinforcement but not amphetamine-induced locomotion. Brain Research 638:29–35

    Article  PubMed  CAS  Google Scholar 

  43. Ros H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J (2010) Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 170:78–91

    Article  PubMed  CAS  Google Scholar 

  44. Alderson HL, Winn P (2005) The pedunculopontine and reinforcement. Basal Ganglia VIII 56:523–532

    Article  Google Scholar 

  45. Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends in Neurosciences 27:585–588

    Article  PubMed  CAS  Google Scholar 

  46. Zahm DS, Williams EA, Latimer MP, Winn P (2001) Ventral mesopontine projections of the caudomedial shell of the nucleus accumbens and extended amygdala in the rat: Double dissociation by organization and development. Journal of Comparative Neurology 436:111–125

    Article  PubMed  CAS  Google Scholar 

  47. Maskos U (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 153 Suppl 1:S438-445

    PubMed  CAS  Google Scholar 

  48. Smolka MN, Buhler M, Klein S, Zimmermann U, Mann K, Heinz A, Braus DF (2006) Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology 184:577–588

    Article  PubMed  CAS  Google Scholar 

  49. Whishaw IQ, Cioe JDD, Previsich N, Kolb B (1977) Variability of interaural line vs stability of bregma in rat stereotaxic surgery. Physiology & Behavior 19:719–722

    Article  CAS  Google Scholar 

  50. Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598

    Article  PubMed  Google Scholar 

  51. Fu YL, Gao WP, Zhu MW, Chen XG, Lin ZG, Wang SG (2009) Computer-assisted automatic localization of the human pedunculopontine nucleus in T1-weighted MR images: a preliminary study. International Journal of Medical Robotics and Computer Assisted Surgery 5:309–318

    Article  PubMed  Google Scholar 

  52. Shimamoto SA, Larson PS, Ostrem JL, Glass GA, Turner RS, Starr PA (2010) Physiological identification of the human pedunculopontine nucleus. Journal of Neurology Neurosurgery and Psychiatry 81:80–86

    Article  CAS  Google Scholar 

  53. Rugg EL, Dunbar JS, Latimer M, Winn P (1992) Excitotoxic lesions of the pedunculopontine tegmental nucleus of the rat. 1. Comparison of the effects of various excitotoxins, with particular reference to the loss of immunohistochemically identified cholinergic neurons. Brain Research 589:181–193

    Article  PubMed  CAS  Google Scholar 

  54. Winn P (1998) Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: A short theoretical review. Brain Research Bulletin 47:551–563

    Article  PubMed  CAS  Google Scholar 

  55. Inglis WL, Olmstead MC, Robbins TW (2000) Pedunculopontine tegmental nucleus lesions impair stimulus-reward learning in autoshaping and conditioned reinforcement paradigms. Behavioral Neuroscience 114:285–294

    Article  PubMed  CAS  Google Scholar 

  56. Keating GL, Winn P (2002) Examination of the role of the pedunculopontine tegmental nucleus in radial maze tasks with or without a delay. Neuroscience 112:687–696

    Article  PubMed  CAS  Google Scholar 

  57. Keating GL, Walker SC, Winn P (2002) An examination of the effects of bilateral excitotoxic lesions of the pedunculopontine tegmental nucleus on responding to sucrose reward. Behavioural Brain Research 134:217–228

    Article  PubMed  Google Scholar 

  58. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  59. Alderson HL, Latimer MP, Blaha CD, Phillips AG, Winn P (2004) An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats. Neuroscience 125:349–358

    Article  PubMed  CAS  Google Scholar 

  60. Olmstead MC, Munn EM, Franklin KBJ, Wise RA (1998) Effects of pedunculopontine tegmental nucleus lesions on responding for intravenous heroin under different schedules of reinforcement. Journal of Neuroscience 18:5035–5044

    PubMed  CAS  Google Scholar 

  61. Alderson HL, Latimer MP, Winn P (2008) A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Structure & Function 213:247–253

    Article  CAS  Google Scholar 

  62. Alderson HL, Brown VJ, Latimer MP, Brasted PJ, Robertson AH, Winn P (2002) The effect of excitotoxic lesions of the pedunculopontine tegmental nucleus on performance of a progressive ratio schedule of reinforcement. Neuroscience 112:417–425

    Article  PubMed  CAS  Google Scholar 

  63. Samson HH, Chappell A (2001) Injected muscimol in pedunculopontine tegmental nucleus alters ethanol self-administration. Alcohol 23:41–48

    Article  PubMed  CAS  Google Scholar 

  64. Hodge CW, Haraguchi M, Chappelle AM, Samson HH (1996) Effects of ventral tegmental microinjections of the GABA(A) agonist muscimol on self-administration of ethanol and sucrose. Pharmacology Biochemistry and Behavior 53:971–977

    Article  CAS  Google Scholar 

  65. Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Research Reviews 58:265–271

    Article  PubMed  CAS  Google Scholar 

  66. Maskos U (2007) Emerging concepts: novel integration of in vivo approaches to localize the function of nicotinic receptors. Journal of Neurochemistry 100:596–602

    Article  PubMed  CAS  Google Scholar 

  67. Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. Journal of Neuroscience 25:4725–4732

    Article  PubMed  CAS  Google Scholar 

  68. Corrigall WA, Coen KM, Zhang JH, Adamson KL (2001) GABA mechanisms in the pedunculopontine tegmental nucleus influence particular aspects of nicotine self-administration selectively in the rat. Psychopharmacology 158:190–197

    Article  PubMed  CAS  Google Scholar 

  69. Sandberg K, Schnaar RL, McKinney M, Hanin I, Fisher A, Coyle JT (1985) AF64A: An Active Site Directed Irreversible Inhibitor of Choline Acetyltransferase. Journal of Neurochemistry 44:439–445

    Article  PubMed  CAS  Google Scholar 

  70. Hanin I (1996) The AF64A model of cholinergic hypofunction: An update. Life Sciences 58:1955–1964

    Article  PubMed  CAS  Google Scholar 

  71. Lanca AJ, Adamson KL, Coen KM, Chow BLC, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: A correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    Article  PubMed  CAS  Google Scholar 

  72. Rodriguez M, MantolanSarmiento B, GonzalezHernandez T (1998) Effects of ethylcholine mustard azirinium ion (AF64A) on the choline acetyltransferase and nitric oxide synthase activities in mesopontine cholinergic neurons of the rat. Neuroscience 82:853–866

    Article  PubMed  CAS  Google Scholar 

  73. Book AA, Wiley RG, Schweitzer JB (1994) 192 IgG-Saporin.1. Specific lethality for cholinergic neurons in the basal ganglia forebrain of the rat. Journal of Neuropathology and Experimental Neurology 53:95–102

    Article  PubMed  CAS  Google Scholar 

  74. Clark SD, Alderson HL, Winn P, Latimer MP, Nothacker HP, Civelli O (2007) Fusion of diphtheria toxin and urotensin II produces a neurotoxin selective for cholinergic neurons in the rat mesopontine tegmentum. Journal of Neurochemistry 102:112–120

    Article  PubMed  CAS  Google Scholar 

  75. Karachi C, Grabli D, Bernard FA, et al. (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. Journal of Clinical Investigation 120:2745–2754

    Article  PubMed  CAS  Google Scholar 

  76. MacLaren DAA, Wilson, D.I.G., Scott, N.W., Winn, P. Investigating the effects of lesions in the cholinergic mesopontine tegmentum on the locomotor response to nicotine. 491.13/CCC14. 2010 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2010. Online.

    Google Scholar 

  77. Kelland MD, Freeman AS, Rubin J, Chiodo LA (1993) Ascending afferent regulation of rat midbrain dopamine neurons. Brain Research Bulletin 31:539–546

    Article  PubMed  CAS  Google Scholar 

  78. Chapman CA, Yeomans JS, Blaha CD, Blackburn JR (1997) Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience 76:177–186

    Article  PubMed  CAS  Google Scholar 

  79. Lodge DJ, Grace AA (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of Phasic neuron activation. Neuropsychopharmacology 31:1356–1361

    Article  PubMed  CAS  Google Scholar 

  80. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience 6:968–973

    Article  PubMed  CAS  Google Scholar 

  81. Forster GL, Blaha CD (2003) Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 17:751–762

    Article  PubMed  Google Scholar 

  82. Ainge JA, Jenkins TA, Winn P (2004) Induction of c-fos in specific thalamic nuclei following stimulation of the pedunculopontine tegmental nucleus. European Journal of Neuroscience 20:1827–1837

    Article  PubMed  Google Scholar 

  83. Garcia-Rill E, Skinner RD (1988) Modulation of the rhythmic function in the posterior midbrain. Neuroscience 27:639–654

    Article  PubMed  CAS  Google Scholar 

  84. Dormont JF, Conde H, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat I. Context-dependent and reinforcement-related single unit activity. Experimental Brain Research 121:401–410

    CAS  Google Scholar 

  85. Kobayashi Y, Inoue Y, Yamamoto M, Isa T, Aizawa H (2002) Contribution of pedunculopontine tegmental nucleus neurons to performance of visually guided saccade tasks in monkeys. Journal of Neurophysiology 88:715–731

    PubMed  Google Scholar 

  86. Kobayashi Y, Okada KC (2007) Reward prediction error computation in the pedunculopontine tegmental nucleus neurons. In: Balleine BW, Doya K, Odoherty J, Sakagami M (eds) Reward and Decision Making in Corticobasal Ganglia Networks. Blackwell Publishing, Oxford, pp 310–323

    Google Scholar 

  87. Okada K, Toyama K, Inoue Y, Isa T, Kobayashi Y (2009) Different Pedunculopontine Tegmental Neurons Signal Predicted and Actual Task Rewards. Journal of Neuroscience 29:4858–4870

    Article  PubMed  CAS  Google Scholar 

  88. Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research 653:278–284

    Article  PubMed  CAS  Google Scholar 

  89. Alderson HL, Latimer MP, Winn P (2006) Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. European Journal of Neuroscience 23:2169–2175

    Article  PubMed  Google Scholar 

  90. Deisseroth K, Feng GP, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience 26:10380–10386

    Article  PubMed  CAS  Google Scholar 

  91. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  PubMed  CAS  Google Scholar 

  92. Marsden CD (1982) The mysterious motor function of the basal ganglia – The Robert Wartenberg Lecture. Neurology 32:514–539

    PubMed  CAS  Google Scholar 

  93. Lanska DJ (2010) Chapter 33: the history of movement disorders. Handb Clin Neurol 95:501–546

    Article  PubMed  Google Scholar 

  94. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego.

    Google Scholar 

  95. Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. Journal of Comparative Neurology 515:397–408.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Duncan MacLaren in preparing this chapter. Work in our lab is supported by grants from the Wellcome Trust (081128/Z/06/Z) and the Medical Research Council (G0901332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine K. Gut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gut, N.K., Winn, P. (2011). The Role of the Pedunculopontine Tegmental Nucleus in Motor Disorders. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics