Skip to main content

Structure–Functions of HspB1 (Hsp27)

  • Protocol
  • First Online:
Molecular Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 787))

Abstract

Human HspB1 (also denoted Hsp27) is a well-known member, together with alphaB-crystallin, of the small heat-shock (or stress) proteins (sHsps) (20–40 kDa). In this chapter, I describe procedures for testing the oligomeric and phosphorylation patterns of HspB1 as well as its interaction with specific partner/client polypeptides using tissue culture cells genetically modified to express different levels of this protein. The procedures have been developed in my laboratory and could be used in any well-established cellular laboratory. In addition, the different procedures presented here could be extended to test the nine other human sHsp members as well as sHsps from other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrigo A-P, Landry J. (1994) Expression and Function of the Low-molecular-weight Heat Shock Proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds.) The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 335–373.

    Google Scholar 

  2. Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW. (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones. 8, 53–61.

    Article  PubMed  CAS  Google Scholar 

  3. Ingolia TD, Craig EA. (1982) Four small heat shock proteins are related to each other and to mammalian a-crystallin. Proc. Natl. Acad. Sci. USA. 79, 2360–2364.

    Article  PubMed  CAS  Google Scholar 

  4. de Jong WW, Caspers GJ, Leunissen JA. (1998) Genealogy of the alpha-crystallin – small heat-shock protein superfamily. Int. J. Biol. Macromol. 22, 151–162.

    Article  PubMed  Google Scholar 

  5. Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J. (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J. Biol. Chem. 274, 9378–9385.

    Article  PubMed  CAS  Google Scholar 

  6. Ehrnsperger M, Lilie H, Gaestel M, Buchner J. (1999) The dynamics of hsp25 quaternary structure. Structure and function of different oligomeric species. J. Biol. Chem. 274, 14867–14874.

    Google Scholar 

  7. Arrigo A-P, Suhan JP, Welch WJ. (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol. Cell. Biol. 8: 5059–5071.

    PubMed  CAS  Google Scholar 

  8. Mehlen P, Hickey E, Weber L, Arrigo A-P. (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFα in NIH-3T3-ras cells. Biochem. Biophys. Res. Comm. 241, 187–192.

    Article  PubMed  CAS  Google Scholar 

  9. Garrido C. (2002) Size matters: of the small HSP27 and its large oligomers. Cell Death Differ. 9, 483–485.

    Article  PubMed  CAS  Google Scholar 

  10. Horwitz J, Huang Q-L, Ding L-L. (1992) Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA. 89, 10449–10453.

    Article  PubMed  CAS  Google Scholar 

  11. Jakob U, Gaestel M, Engels K, Buchner J. (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520.

    PubMed  CAS  Google Scholar 

  12. Ganea E. (2001) Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr. Protein Pept. Sci. 2, 205–225.

    Article  PubMed  CAS  Google Scholar 

  13. Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J. (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum. Mol. Genet. 14, 1659–1669.

    Article  PubMed  CAS  Google Scholar 

  14. Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, Farkas R, Sumegi B, Gallyas F. (2007) Preventing apoptotic cell death by a novel small heat shock protein. Eur. J. Cell. Biol. 86, 161–171.

    Article  PubMed  CAS  Google Scholar 

  15. Markossian KA, Yudin IK, Kurganov BI. (2009) Mechanism of Suppression of Protein Aggregation by alpha-Crystallin. Int. J. Mol. Sci. 10, 1314–1345.

    Article  PubMed  CAS  Google Scholar 

  16. Freeman BC, Morimoto RI. (1996) The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. Embo. J. 15, 2969–2979.

    PubMed  CAS  Google Scholar 

  17. Bukau B, Horwich AL. (1998) The Hsp70 and Hsp60 chaperone machines. Cell. 92, 351–366.

    Article  PubMed  CAS  Google Scholar 

  18. Buchner J. (1999) Hsp90 & Co. - a holding for folding. Trends Biochem. Sci. 24, 136–141.

    Article  PubMed  CAS  Google Scholar 

  19. Lee GJ, Roseman AM, Saibil HR, Vierling E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO. J. 16, 659–671.

    Article  PubMed  CAS  Google Scholar 

  20. Ehrnsperger M, Graber S, Gaestel M, Buchner J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO. J. 16, 221–229.

    Article  PubMed  CAS  Google Scholar 

  21. Lee GJ, Vierling E. (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122, 189–198.

    Article  PubMed  CAS  Google Scholar 

  22. Pandey P, Farber R, Nakazawa A, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S. (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene. 19, 1975–1981.

    Article  PubMed  CAS  Google Scholar 

  23. Neckers L, Mimnaugh E, Schulte TW. (1999) Hsp90 as an anti-cancer target. Drug Resist. Updat. 2, 165–172.

    Article  PubMed  CAS  Google Scholar 

  24. Georgakis GV, Younes A. (2005) Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol. 1, 273–281.

    Article  PubMed  CAS  Google Scholar 

  25. Cuesta R, Laroia G, Schneider RJ. (2000) Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev. 14, 1460–1470.

    PubMed  CAS  Google Scholar 

  26. Nicholl ID, Quinlan RA. (1994) Chaperone Activity of alpha-Crystallins Modulates Intermediate Filament Assembly. EMBO. J. 13, 945–953.

    PubMed  CAS  Google Scholar 

  27. Arrigo AP, Firdaus WJ, Mellier G, Moulin, M., Paul, C. Diaz-Latoud, C., and C. Kretz-Remy. (2005) Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods. 35, 126–138.

    Article  PubMed  CAS  Google Scholar 

  28. Bruey JM, Ducasse C, Bonniaud P, Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Arrigo, A.-P., Kroemer, G., Solary, E., Garrido, C. (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell. Biol. 2, 645–652.

    Article  PubMed  CAS  Google Scholar 

  29. Arrigo AP. (2005) In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J. Cell. Biochem. 94, 241–246.

    Article  PubMed  CAS  Google Scholar 

  30. Mao YW, Liu JP, Xiang H, Li DW. (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ. 11, 512–526.

    Article  PubMed  CAS  Google Scholar 

  31. Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Liu L, Huang XQ, Liu Y, Li DW. (2004) Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp. Eye Res. 79, 393–403.

    Google Scholar 

  32. Rane MJ, Pan Y, Singh S, Poell D, Wu R, Cummins T, Chen Q, McLeish KR, Klein JB. (2003) Heat shock protein 27 controls apoptosis by regulating akt activation. J. Biol. Chem. 278, 27828–27835.

    Article  PubMed  CAS  Google Scholar 

  33. Carra S. (2009) The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: implications for protein quality control and viral factory degradation? Autophagy. 5, 428–429.

    Article  PubMed  CAS  Google Scholar 

  34. Duverger O, Paslaru L, Morange M. (2004) HSP25 is involved in two steps of the differentiation of PAM212 keratinocytes. J. Biol. Chem. 279, 10252–10260.

    Article  PubMed  CAS  Google Scholar 

  35. Koteiche HA, McHaourab HS. (2003) Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin. J. Biol. Chem. 278, 10361–10367.

    Google Scholar 

  36. Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV. (2004) Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure. J. Biol. Chem. 279, 28675–28680.

    Article  PubMed  CAS  Google Scholar 

  37. Rogalla, T., Ehrnsperger, M., Preville, X., Kotlyarov, A., Lutsch, G., Ducasse, C., Paul, C., Wieske, M., Arrigo, A.P., Buchner, J., and Gaestel, M. (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem. 274, 18947–18956.

    Article  PubMed  CAS  Google Scholar 

  38. Zantema A, Vries MV-D, Maasdam D, Bol S, Van der Eb A. (1992) Heat shock protein 27 and aB-cristallin can form a complex, which dissociates by heat shock. J. Biol. Chem. 267, 12936–12941.

    PubMed  CAS  Google Scholar 

  39. Sun TX, Liang JJ. (1998) Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J. Biol. Chem. 273, 286–290.

    Article  PubMed  CAS  Google Scholar 

  40. Saha S, Das KP. (2004) Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: a tryptic digestion study. Proteins. 57, 610–617.

    Article  PubMed  CAS  Google Scholar 

  41. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo A-P. (2002) Hsp27 as a negative regulator of cytochrome C release. Mol. Cell. Biol. 22, 816–834.

    Article  PubMed  CAS  Google Scholar 

  42. Mehlen P, Préville X, Chareyron P, Briolay J, Klemenz R, Arrigo A-P. (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J. Immunol. 154, 363–374.

    PubMed  CAS  Google Scholar 

  43. Brummelkamp TR, Bernards R, Agami R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science. 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  44. Mehlen P, Mehlen A, Guillet D, Préville X, Arrigo A.-P. (1995) Tumor necrosis factor-α induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J. Cell. Biochem. 58, 248–259.

    Article  PubMed  CAS  Google Scholar 

  45. Pichon S, Bryckaert M, Berrou E. (2004) Control of actin dynamics by p38 MAP kinase – Hsp27 distribution in the lamellipodium of smooth muscle cells. J. Cell. Sci. 117, 2569–2577.

    Article  PubMed  CAS  Google Scholar 

  46. Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP. (2005) Substitution of the unique cysteine residue of murine hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid. Redox. Signal. 7, 436–445.

    Article  PubMed  CAS  Google Scholar 

  47. Arrigo A-P, Welch W. (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J. Biol. Chem. 262, 15359–15369.

    PubMed  CAS  Google Scholar 

  48. Merendino, A., Paul, C., Costa, M A., Melis, M., Chiappara, G., Izzo, V., Vignola, AM., Arrigo, A-P. (2002) Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: possible implication in asthma. Cell. Stress Chaperones. 7, 269–280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André-Patrick Arrigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Arrigo, AP. (2011). Structure–Functions of HspB1 (Hsp27). In: Calderwood, S., Prince, T. (eds) Molecular Chaperones. Methods in Molecular Biology, vol 787. Humana Press. https://doi.org/10.1007/978-1-61779-295-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-295-3_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-294-6

  • Online ISBN: 978-1-61779-295-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics