Skip to main content

Spinal Cord – MR of Rodent Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

Different MR techniques, such as relaxation times, diffusion, perfusion, and spectroscopy have been employed to study rodent spinal cord. In this chapter, a description of these methods is given, along with examples of normal metrics that can be derived from the MR acquisitions, as well as examples of applications to pathology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Banasik, T., Jasinski, A., Pilc, A., Majcher, K., and Brzegowy, P. (2005) Application of magnetic resonance diffusion anisotropy imaging for the assessment neuroprotecting effects of MPEP, a selective mGluR5 antagonist, on the rat spinal cord injury in vivo. Pharmacol Rep. 57, 861–866.

    PubMed  CAS  Google Scholar 

  2. Watson, C., Paxinos, G., and Kayalioglu, G. (2009) The Spinal Cord. A Christopher and Dana Reeve Foundation Text and Atlas, Elsevier ed., Academic Press, Elsevier, London.

    Google Scholar 

  3. Sandner, B., Pillai, D. R., Heidemann, R. M., Schuierer, G., Mueller, M. F., Bogdahn, U., Schlachetzki, F., and Weidner, N. (2009) In vivo high-resolution imaging of the injured rat spinal cord using a 3.0 T clinical MR scanner. J Magn Reson Imaging. 29, 725–730.

    Article  PubMed  Google Scholar 

  4. Dunn, E. A., Weaver, L. C., Dekaban, G. A., and Foster, P. J. (2005) Cellular imaging of inflammation after experimental spinal cord injury. Mol Imaging. 4, 53–62.

    PubMed  Google Scholar 

  5. Heckl, S., Nagele, T., Herrmann, M., Gartner, S., Klose, U., Schick, F., Weissert, R., and Kuker, W. (2004) Experimental autoimmune encephalomyelitis (EAE): lesion visualization on a 3 Tesla clinical whole-body system after intraperitoneal contrast injection. Rofo. 176, 1549–1554.

    PubMed  CAS  Google Scholar 

  6. Budde, M. D., Kim, J. H., Liang, H. F., Russell, J. H., Cross, A. H., and Song, S. K. (2008) Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR Biomed. 21, 589–597.

    Article  PubMed  Google Scholar 

  7. Budde, M. D., Kim, J. H., Liang, H. F., Schmidt, R. E., Russell, J. H., Cross, A. H., and Song, S. K. (2007) Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med. 57, 688–695.

    Article  PubMed  Google Scholar 

  8. Kim, J. H., Budde, M. D., Liang, H. F., Klein, R. S., Russell, J. H., Cross, A. H., and Song, S. K. (2006) Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis. 21, 626–632.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, J. H., Loy, D. N., Liang, H. F., Trinkaus, K., Schmidt, R. E., and Song, S. K. (2007) Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med. 58, 253–260.

    Article  PubMed  Google Scholar 

  10. Kim, J. H., Trinkaus, K., Ozcan, A., Budde, M. D., and Song, S. K. (2007) Postmortem delay does not change regional diffusion anisotropy characteristics in mouse spinal cord white matter. NMR Biomed. 20, 352–359.

    Article  PubMed  Google Scholar 

  11. Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., and Neufeld, A. H. (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 20, 1714–1722.

    Article  PubMed  Google Scholar 

  12. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., and Cross, A. H. (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 17, 1429–1436.

    Article  PubMed  Google Scholar 

  13. Fraidakis, M., Klason, T., Cheng, H., Olson, L., and Spenger, C. (1998) High-resolution MRI of intact and transected rat spinal cord. Exp Neurol. 153, 299–312.

    Article  PubMed  CAS  Google Scholar 

  14. Gullapalli, J., Krejza, J., and Schwartz, E. D. (2006) In vivo DTI evaluation of white matter tracts in rat spinal cord. J Magn Reson Imaging. 24, 231–234.

    Article  PubMed  Google Scholar 

  15. Benveniste, H., Qui, H., Hedlund, L. W., D'Ercole, F., and Johnson, G. A. (1998) Spinal cord neural anatomy in rats examined by in vivo magnetic resonance microscopy. Reg Anesth Pain Med. 23, 589–599.

    PubMed  CAS  Google Scholar 

  16. Deo, A. A., Grill, R. J., Hasan, K. M., and Narayana, P. A. (2006) In vivo serial diffusion tensor imaging of experimental spinal cord injury. J Neurosci Res. 83, 801–810.

    Article  PubMed  CAS  Google Scholar 

  17. Franconi, F., Lemaire, L., Marescaux, L., Jallet, P., and Le Jeune, J. J. (2000) In vivo quantitative microimaging of rat spinal cord at 7 T. Magn Reson Med. 44, 893–898.

    Article  PubMed  CAS  Google Scholar 

  18. Mogatadakala, K. V., and Narayana, P. A. (2009) In vivo diffusion tensor imaging of thoracic and cervical rat spinal cord at 7 T. Magn Reson Imaging 27, 1236–1241.

    Google Scholar 

  19. Narayana, P. A., Grill, R. J., Chacko, T., and Vang, R. (2004) Endogenous recovery of injured spinal cord: longitudinal in vivo magnetic resonance imaging. J Neurosci Res. 78, 749–759.

    Article  PubMed  CAS  Google Scholar 

  20. Pirko, I., Ciric, B., Gamez, J., Bieber, A. J., Warrington, A. E., Johnson, A. J., Hanson, D. P., Pease, L. R., Macura, S. I., and Rodriguez, M. (2004) A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T 2-weighted spinal cord MRI in a virus-induced murine model of MS. Faseb J. 18, 1577–1579.

    PubMed  CAS  Google Scholar 

  21. Bilgen, M. (2004) Simple, low-cost multipurpose RF coil for MR microscopy at 9.4 T. Magn Reson Med. 52, 937–940.

    Article  PubMed  Google Scholar 

  22. Bilgen, M., Abbe, R., Liu, S. J., and Narayana, P. A. (2000) Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: in vivo magnetic resonance imaging. Magn Reson Med. 43, 594–600.

    Article  PubMed  CAS  Google Scholar 

  23. Bilgen, M., Abbe, R., and Narayana, P. A. (2001) Dynamic contrast-enhanced MRI of experimental spinal cord injury: in vivo serial studies. Magn Reson Med. 45, 614–622.

    Article  PubMed  CAS  Google Scholar 

  24. Bilgen, M., Al-Hafez, B., Berman, N. E., and Festoff, B. W. (2005) Magnetic resonance imaging of mouse spinal cord. Magn Reson Med. 54, 1226–1231.

    Article  PubMed  Google Scholar 

  25. Bilgen, M., Al-Hafez, B., He, Y. Y., and Brooks, W. M. (2005) Magnetic resonance angiography of rat spinal cord at 9.4 T: a feasibility study. Magn Reson Med. 53, 1459–1461.

    Article  PubMed  Google Scholar 

  26. Bonny, J. M., Gaviria, M., Donnat, J. P., Jean, B., Privat, A., and Renou, J. P. (2004) Nuclear magnetic resonance microimaging of mouse spinal cord in vivo. Neurobiol Dis. 15, 474–482.

    Article  PubMed  Google Scholar 

  27. Ellingson, B. M., Kurpad, S. N., Li, S. J., and Schmit, B. D. (2008) In vivo diffusion tensor imaging of the rat spinal cord at 9.4 T. J Magn Reson Imaging. 27, 634–642.

    Article  PubMed  Google Scholar 

  28. Gaviria, M., Bonny, J. M., Haton, H., Jean, B., Teigell, M., Renou, J. P., and Privat, A. (2006) Time course of acute phase in mouse spinal cord injury monitored by ex vivo quantitative MRI. Neurobiol Dis. 22, 694–701.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz, E. D., Chin, C. L., Shumsky, J. S., Jawad, A. F., Brown, B. K., Wehrli, S., Tessler, A., Murray, M., and Hackney, D. B. (2005) Apparent diffusion coefficients in spinal cord transplants and surrounding white matter correlate with degree of axonal dieback after injury in rats. AJNR Am J Neuroradiol. 26, 7–18.

    PubMed  Google Scholar 

  30. Schwartz, E. D., Cooper, E. T., Chin, C. L., Wehrli, S., Tessler, A., and Hackney, D. B. (2005) Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am J Neuroradiol. 26, 390–397.

    PubMed  Google Scholar 

  31. Ahrens, E. T., Laidlaw, D. H., Readhead, C., Brosnan, C. F., Fraser, S. E., and Jacobs, R. E. (1998) MR microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis. Magn Reson Med. 40, 119–132.

    Article  PubMed  CAS  Google Scholar 

  32. Callot, V., Duhamel, G., and Cozzone, P. J. (2007) In vivo mouse spinal cord (SC) imaging using Echo-Planar Imaging (EPI) at 11.75T. Magn Reson Mater Phy. 20, 169–173.

    Article  Google Scholar 

  33. Callot, V., Duhamel, G., Le Fur, Y., Decherchi, P., Marqueste, T., Kober, F., and Cozzone, P. J. (2010) Echo planar diffusion tensor imaging of the mouse spinal cord at thoracic and lumbar levels: a feasibility study. Magn Reson Med. 63, 1125–1134.

    Google Scholar 

  34. Duhamel, G., Callot, V., Cozzone, P. J., and Kober, F. (2008) Spinal cord blood flow measurement by arterial spin labeling. Magn Reson Med. 59, 846–854.

    Article  PubMed  Google Scholar 

  35. Duhamel, G., Callot, V., Decherchi, P., Le Fur, Y., Marqueste, T., Cozzone, P. J., and Kober, F. (2009) Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: sensitivity optimization and first application. Magn Reson Med. 62(2), 430–439.

    Article  PubMed  Google Scholar 

  36. Callot, V., Duhamel, G., Cozzone, P. J., and Kober, F. (2008) Short scan-time multi-slice diffusion MR Imaging of the mouse cervical spinal cord using echo planar imaging. NMR Biomed. 21, 868–877.

    Article  PubMed  Google Scholar 

  37. Balla, D. Z., and Faber, C. (2007) In vivo intermolecular zero-quantum coherence MR spectroscopy in the rat spinal cord at 17.6 T: a feasibility study. Magma. 20, 183–191.

    Article  PubMed  CAS  Google Scholar 

  38. Behr, V. C., Weber, T., Neuberger, T., Vroemen, M., Weidner, N., Bogdahn, U., Haase, A., Jakob, P. M., and Faber, C. (2004) High-resolution MR imaging of the rat spinal cord in vivo in a wide-bore magnet at 17.6 Tesla. Magma, Magn Reson Mater Phys. 17, 353–358.

    Article  CAS  Google Scholar 

  39. Weber, T., Vroemen, M., Behr, V., Neuberger, T., Jakob, P., Haase, A., Schuierer, G., Bogdahn, U., Faber, C., and Weidner, N. (2006) In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord. AJNR Am J Neuroradiol. 27, 598–604.

    PubMed  CAS  Google Scholar 

  40. Narayana, P., Fenyes, D., and Zacharopoulos, N. (1999) In vivo relaxation times of gray matter and white matter in spinal cord. Magn Reson Imaging. 17, 623–626.

    Article  PubMed  CAS  Google Scholar 

  41. Ginefri, J. C., Poirier-Quinot, M., Girard, O., and Darrasse, L. (2007) Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T. Methods. 43, 54–67.

    Article  PubMed  CAS  Google Scholar 

  42. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., and Matthews, P. M. (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 23(Suppl 1), S208–219.

    Article  PubMed  Google Scholar 

  43. Basser, P. J., and Jones, D. K. (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed. 15, 456–467.

    Article  PubMed  Google Scholar 

  44. Beaulieu, C. (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 15, 435–455.

    Article  PubMed  Google Scholar 

  45. Ford, J. C., Hackney, D. B., Alsop, D. C., Jara, H., Joseph, P. M., Hand, C. M., and Black, P. (1994) MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med. 31, 488–494.

    Article  PubMed  CAS  Google Scholar 

  46. Fenyes, D. A., and Narayana, P. A. (1999) In vivo diffusion tensor imaging of rat spinal cord with echo planar imaging. Magn Reson Med. 42, 300–306.

    Article  PubMed  CAS  Google Scholar 

  47. Tu, T. W., Kim, J. H., Wang, J., and Song, S. K. (2010) Full tensor diffusion imaging is not required to assess the white matter integrity in mouse contusion spinal cord injury. J Neurotrauma. 27, 253–262.

    Article  PubMed  Google Scholar 

  48. Niessen, H. G., Angenstein, F., Sander, K., Kunz, W. S., Teuchert, M., Ludolph, A. C., Heinze, H. J., Scheich, H., and Vielhaber, S. (2006) In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T 2 relaxation time and apparent diffusion coefficient. Exp Neurol. 201, 293–300.

    Article  PubMed  CAS  Google Scholar 

  49. Hesseltine, S. M., Law, M., Babb, J., Rad, M., Lopez, S., Ge, Y., Johnson, G., and Grossman, R. I. (2006) Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol. 27, 1189–1193.

    PubMed  CAS  Google Scholar 

  50. Bilgen, M. (2006) Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI. BMC Med Imaging. 6, 15.

    Article  PubMed  Google Scholar 

  51. Schwartz, E. D., Duda, J., Shumsky, J. S., Cooper, E. T., and Gee, J. (2005) Spinal cord diffusion tensor imaging and fiber tracking can identify white matter tract disruption and glial scar orientation following lateral funiculotomy. J Neurotrauma. 22, 1388–1398.

    Article  PubMed  Google Scholar 

  52. Madi, S., Hasan, K. M., and Narayana, P. A. (2005) Diffusion tensor imaging of in vivo and excised rat spinal cord at 7 T with an icosahedral encoding scheme. Magn Reson Med. 53, 118–125.

    Article  PubMed  Google Scholar 

  53. Schwartz, E. D., Cooper, E. T., Fan, Y., Jawad, A. F., Chin, C. L., Nissanov, J., and Hackney, D. B. (2005) MRI diffusion coefficients in spinal cord correlate with axon morphometry. Neuroreport. 16, 73–76.

    Article  PubMed  Google Scholar 

  54. Bilgen, M., Dogan, B., and Narayana, P. A. (2002) In vivo assessment of blood-spinal cord barrier permeability: serial dynamic contrast enhanced MRI of spinal cord injury. Magn Reson Imaging. 20, 337–341.

    Article  PubMed  Google Scholar 

  55. Loy, D. N., Kim, J. H., Xie, M., Schmidt, R. E., Trinkaus, K., and Song, S. K. (2007) Diffusion tensor imaging predicts hyperacute spinal cord injury severity. J Neurotrauma. 24, 979–990.

    Article  PubMed  Google Scholar 

  56. Bilgen, M. (2007) Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil. J Neurosci Methods. 159, 93–97.

    Article  PubMed  Google Scholar 

  57. Ma, M., Basso, D. M., Walters, P., Stokes, B. T., and Jakeman, L. B. (2001) Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp Neurol. 169, 239–254.

    Article  PubMed  CAS  Google Scholar 

  58. Fraidakis, M. J., Spenger, C., and Olson, L. (2004) Partial recovery after treatment of chronic paraplegia in rat. Exp Neurol. 188, 33–42.

    Article  PubMed  Google Scholar 

  59. Schwartz, E. D., Yezierski, R. P., Pattany, P. M., Quencer, R. M., and Weaver, R. G. (1999) Diffusion-weighted MR imaging in a rat model of syringomyelia after excitotoxic spinal cord injury. AJNR Am J Neuroradiol. 20, 1422–1428.

    PubMed  CAS  Google Scholar 

  60. Carmeliet, P. (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 4, 710–720.

    Article  PubMed  CAS  Google Scholar 

  61. Eichmann, A., Le Noble, F., Autiero, M., and Carmeliet, P. (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol. 15, 108–115.

    Article  PubMed  CAS  Google Scholar 

  62. Park, K. W., Crouse, D., Lee, M., Karnik, S. K., Sorensen, L. K., Murphy, K. J., Kuo, C. J., and Li, D. Y. (2004) The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci USA. 101, 16210–16215.

    Article  PubMed  CAS  Google Scholar 

  63. Koyanagi, I., Tator, C. H., and Lea, P. J. (1993) Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury. Neurosurgery. 33, 285–291; discussion 292.

    Article  PubMed  CAS  Google Scholar 

  64. Guha, A., Tator, C. H., and Rochon, J. (1989) Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke. 20, 372–377.

    Article  PubMed  CAS  Google Scholar 

  65. Whetstone, W. D., Hsu, J. Y., Eisenberg, M., Werb, Z., and Noble-Haeusslein, L. J. (2003) Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res. 74, 227–239.

    Article  PubMed  CAS  Google Scholar 

  66. Beggs, J. L., and Waggener, J. D. (1979) Microvascular regeneration following spinal cord injury: the growth sequence and permeability properties of new vessels. Adv Neurol. 22, 191–206.

    PubMed  CAS  Google Scholar 

  67. Blight, A. R. (1991) Morphometric analysis of blood vessels in chronic experimental spinal cord injury: hypervascularity and recovery of function. J Neurol Sci. 106, 158–174.

    Article  PubMed  CAS  Google Scholar 

  68. Imperato-Kalmar, E. L., McKinney, R. A., Schnell, L., Rubin, B. P., and Schwab, M. E. (1997) Local changes in vascular architecture following partial spinal cord lesion in the rat. Exp Neurol. 145, 322–328.

    Article  PubMed  CAS  Google Scholar 

  69. Hamamoto, Y., Ogata, T., Morino, T., Hino, M., and Yamamoto, H. (2007) Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury. Spine. 32, 1955–1962.

    Article  PubMed  Google Scholar 

  70. Dray, C., Rougon, G., and Debarbieux, F. (2009) Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc Natl Acad Sci USA. 106, 9459–9464.

    Article  PubMed  CAS  Google Scholar 

  71. Detre, J. A., Leigh, J. S., Williams, D. S., and Koretsky, A. P. (1992) Perfusion imaging. Magn Reson Med. 23, 37–45.

    Article  PubMed  CAS  Google Scholar 

  72. Kim, S. G. (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 34, 293–301.

    Article  PubMed  CAS  Google Scholar 

  73. Duhamel, G., Decherchi, P., Marqueste, T., Cozzone, P. J., and Callot, V. (2009) Vascular modifications occuring during spinal cord injury (SCI) recovery using high-resolution arterial spin labeling (ASL). Annual meeting of ISMRM. p. 1298.

    Google Scholar 

  74. Tatar, I., Chou, P. C., Desouki, M. M., El Sayed, H., and Bilgen, M. (2009) Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI. BMC Med Imaging. 9, 10.

    Article  PubMed  Google Scholar 

  75. Bilgen, M., and Narayana, P. A. (2001) A pharmacokinetic model for quantitative evaluation of spinal cord injury with dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med. 46, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  76. Bilgen, M., Elshafiey, I., and Narayana, P. A. (2001) In vivo magnetic resonance microscopy of rat spinal cord at 7 T using implantable RF coils. Magn Reson Med. 46, 1250–1253.

    Article  PubMed  CAS  Google Scholar 

  77. Silver, X., Ni, W. X., Mercer, E. V., Beck, B. L., Bossart, E. L., Inglis, B., and Mareci, T. H. (2001) In vivo 1H magnetic resonance imaging and spectroscopy of the rat spinal cord using an inductively-coupled chronically implanted RF coil. Magn Reson Med. 46, 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  78. Zelaya, F. O., Chalk, J. B., Mullins, P., Brereton, I. M., and Doddrell, D. M. (1996) Localized 1H NMR spectroscopy of rat spinal cord in vivo. Magn Reson Med. 35, 443–448.

    Article  PubMed  CAS  Google Scholar 

  79. Tachrount, M., Duhamel, G., Maues de Paula, A., Laurin, J., Marqueste, T., Decherchi, P., and Cozzone, P. J. (2011) Medullar and thalamic metabolic alterations following spinal cord injury (SCI): a preliminary mice study, combining early and longitudinal follow-ups using high-spatially resolved MRS and DTI at high field. Annual meeting of ISMRM. p. 401.

    Google Scholar 

  80. Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 87, 9868–9872.

    Article  PubMed  CAS  Google Scholar 

  81. Lawrence, J., Stroman, P. W., and Malisza, K. L. (2007) Comparison of functional activity in the rat cervical spinal cord during alpha-chloralose and halothane anesthesia. Neuroimage. 34, 1665–1672.

    Article  PubMed  Google Scholar 

  82. Majcher, K., Tomanek, B., Tuor, U. I., Jasinski, A., Foniok, T., Rushforth, D., and Hess, G. (2007) Functional magnetic resonance imaging within the rat spinal cord following peripheral nerve injury. Neuroimage. 38, 669–676.

    Article  PubMed  Google Scholar 

  83. Malisza, K. L., Stroman, P. W., Turner, A., Gregorash, L., Foniok, T., and Wright, A. (2003) Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging. 18, 152–159.

    Article  PubMed  Google Scholar 

  84. Zhao, F., Williams, M., Meng, X., Welsh, D. C., Coimbra, A., Crown, E. D., Cook, J. J., Urban, M. O., Hargreaves, R., and Williams, D. S. (2008) BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation. Neuroimage. 40, 133–147.

    Article  PubMed  Google Scholar 

  85. Zhao, F., Williams, M., Meng, X., Welsh, D. C., Grachev, I. D., Hargreaves, R., and Williams, D. S. (2009) Pain fMRI in rat cervical spinal cord: an echo planar imaging evaluation of sensitivity of BOLD and blood volume-weighted fMRI. Neuroimage. 44, 349–362.

    Article  PubMed  Google Scholar 

  86. Fenyes, D. A., and Narayana, P. A. (1998) In vivo echo-planar imaging of rat spinal cord. Magn Reson Imaging. 16, 1249–1255.

    Article  PubMed  CAS  Google Scholar 

  87. Duhamel, G., Decherchi, P., Marqueste, T., Cozzone, P. J., and Callot, V. (2009) Assessment of pathologic mouse spinal cord recovery using high-resolution diffusion and ASL-based perfusion imaging, Annual meeting of ISMRM. p. 1295.

    Google Scholar 

  88. Le Bihan, D., Poupon, C., Amadon, A., and Lethimonnier, F. (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 24, 478–488.

    Article  PubMed  Google Scholar 

  89. Summers, P., Staempfli, P., Jaermann, T., Kwiecinski, S., and Kollias, S. (2006) A preliminary study of the effects of trigger timing on diffusion tensor imaging of the human spinal cord. AJNR Am J Neuroradiol. 27, 1952–1961.

    PubMed  CAS  Google Scholar 

  90. Inglis, B. A., Yang, L., Wirth, E. D., 3rd, Plant, D., and Mareci, T. H. (1997) Diffusion anisotropy in excised normal rat spinal cord measured by NMR microscopy. Magn Reson Imaging. 15, 441–450.

    Article  PubMed  CAS  Google Scholar 

  91. Elshafiey, I., Bilgen, M., He, R., and Narayana, P. A. (2002) In vivo diffusion tensor imaging of rat spinal cord at 7 T. Magn Reson Imaging. 20, 243–247.

    Article  PubMed  Google Scholar 

  92. Inglis, B. A., Bossart, E. L., Buckley, D. L., Wirth, E. D., 3rd, and Mareci, T. H. (2001) Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn Reson Med. 45, 580–587.

    Article  PubMed  CAS  Google Scholar 

  93. Gruetter, R. (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med. 29, 804–811.

    Article  PubMed  CAS  Google Scholar 

  94. Pell, G. S., Thomas, D. L., Lythgoe, M. F., Calamante, F., Howseman, A. M., Gadian, D. G., and Ordidge, R. J. (1999) Implementation of quantitative FAIR perfusion imaging with a short repetition time in time-course studies. Magn Reson Med. 41, 829–840.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Callot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Callot, V., Duhamel, G., Kober, F. (2011). Spinal Cord – MR of Rodent Models. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics