Skip to main content

The Hypoxic Rat Model for Obstetric Complications in Schizophrenia

  • Protocol
  • First Online:
Animal Models of Schizophrenia and Related Disorders

Abstract

Hypoxia has been discussed as a possible factor of obstetric complications in the pathophysiology of schizophrenia. This study investigated the effects of chronic neonatal hypoxia in rats as an animal model of schizophrenia. Methods: (1) After chronic neonatal hypoxia between postnatal day (PD) 4 and 8, half of the pups were fostered by normally treated nurse animals to control for possible maternal effects and (2) tested on PD 36, 86, 120, and 150 using three different behavioral tests: prepulse inhibition (PPI), social interaction and recognition, and motor activity in an open field. (3) Before the PD 150 test, 50% of the animals had been chronically treated with the antipsychotic drug clozapine (45 mg/kg/day). (4) At PD 155, different brain regions have been used for expression profiling of synaptic genes on cDNA microarrays (“glutamate chip”) with qRT-PCR confirmation. Additionally, at PD 11 and 120, NMDA receptor binding and expression of NMDA receptor subunits have been performed. Rats exposed to hypoxia exhibited deficits in locomotor activity on PD 86, 120, and 150, as well as a PPI deficit on PD 120 and 150 in adulthood, but not before. Chronic treatment with clozapine reversed hypoxia-induced PPI deficits, but not the decreased locomotor activity. In a second experiment, where clozapine was chronically administered before PD 120, development of the PPI deficit in the animals exposed to hypoxia was prevented. In several brain regions, presynaptic genes such as SNAP-25, syntaxin 1A, neurexin, neuropeptide Y, and complexin I were downregulated and the NR1 subunit of the NMDA receptor was upregulated by hypoxia. These differential gene regulations could be partially compensated for by clozapine treatment. NMDA receptor binding was decreased at PD 11 and expression of the NR1 subunit was increased at PD 11 and 120. The time course of hypoxia-induced PPI deficits and their reversal by clozapine support the validity of our animal model and the hypothesis that hypoxia as a factor of obstetric complications plays a role in the pathophysiology of schizophrenia. Differential gene expression in cortical and subcortical brain regions as well as correlations to deficits of PPI support the view of an involvement of synapse-associated gene products and glutamatergic and GABAergic neurotransmission in the pathophysiology of behavioral deficits occurring as delayed responses to neonatal hypoxia in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cannon, T.D., Rosso, I.M., Bearden, C.E., Sanchez, L.E., and Hadley, T. (1999) A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol 11, 467–485.

    Article  PubMed  CAS  Google Scholar 

  2. McNeil, T.F., Cantor-Graae, E., and Ismail, B. (2000a) Obstetric complications and congenital malformation in schizophrenia. Brain Res Brain Res Rev 31, 166–178.

    Article  PubMed  CAS  Google Scholar 

  3. Dalman, C., Thomas, H.V., David, A.S., Gentz, J., Lewis, G., and Allebeck, P. (2001) Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study. Br J Psychiatry 179, 403–408.

    Article  PubMed  CAS  Google Scholar 

  4. Cannon, T.D., van Erp, T.G., Rosso, I.M., Huttunen, M., Lönnqvist, J., Pirkola, T., Salonen, O., Valanne, L., Poutanen, V.P., and Standertskjöld-Nordenstam, C.G. (2002) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59, 35–41.

    Article  PubMed  Google Scholar 

  5. McNeil, T.F., Cantor-Graae, E., and Weinberger, D.R. (2000b) Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157, 203–212.

    Article  PubMed  CAS  Google Scholar 

  6. Van Erp, T.G., Saleh, P.A., Rosso, I.M., Huttunen, M., Lönnqvist, J., Pirkola, T., Salonen, O., Valanne, L., Poutanen, V.P., Standertskjöld-Nordenstam, C.G., and Cannon, T.D. (2002) Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159, 1514–1520.

    Article  PubMed  Google Scholar 

  7. Verdoux, H., Geddes, J.R., Takei, N., Lawrie, S.M., Bovet, P., Eagles, J.M., Heun, R., McCreadie, R.G., McNeil, T.F., O’Callaghan, E., Stober, G., Willinger, M.U., Wright, P., and Murray, R.M. (1997) Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data. Am J Psychiatry 154, 1220–1227.

    PubMed  CAS  Google Scholar 

  8. Weinberger, D.R. (1996) On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14, 1S–11S.

    Article  PubMed  CAS  Google Scholar 

  9. Ikonomidou, C., Mosinger, J.L., Salles, K.S., Labruyere, J., and Olney, J.W. (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9, 2809–2818.

    PubMed  CAS  Google Scholar 

  10. Dobbing, J., and Sands, J. (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3, 79–83.

    Article  PubMed  CAS  Google Scholar 

  11. Tremblay, E., Roisin, M.P., Represa, A., Charriaut-Marlangue, C., and Ben-Ari, Y. (1988) Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res 461, 393–396.

    Article  PubMed  CAS  Google Scholar 

  12. McDonald, J.W., and Johnston, M.V. (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev 15, 41–70.

    Article  PubMed  Google Scholar 

  13. Johnston, M.V. (1995) Neurotransmitters and vulnerability of the developing brain. Brain Dev 17, 301–306.

    Article  PubMed  CAS  Google Scholar 

  14. Represa, A., Tremblay, E., and Ben-Ari, Y. (1989) Transient increase of NMDA-binding sites in human hippocampus during development. Neurosci Lett 99, 61–66.

    Article  PubMed  CAS  Google Scholar 

  15. Ritter, L.M., Unis, A.S., and Meador-Woodruff, J.H. (2001) Ontogeny of ionotropic glutamate receptor expression in human fetal brain. Brain Res Dev Brain Res 127, 123–133.

    Article  PubMed  CAS  Google Scholar 

  16. Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., and Masu, M. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268, 2836–2843.

    PubMed  CAS  Google Scholar 

  17. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540.

    Article  PubMed  CAS  Google Scholar 

  18. Mattson, M.P., Lee, R.E., Adams, M.E., Guthrie, P.B., and Kater, S.B. (1988) Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1, 865–876.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald, J.W., Silverstein, F.S., and Johnston, M.V. (1988) Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459, 200–203.

    Article  PubMed  CAS  Google Scholar 

  20. Brewer, G.J., and Cotman, C.W. (1989) NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neurosci Lett 99, 268–273.

    Article  PubMed  CAS  Google Scholar 

  21. Brooks, W.J., Petit, T.L., LeBoutillier, J.C., and Lo, R. (1991) Rapid alteration of synaptic number and postsynaptic thickening length by NMDA: an electron microscopic study in the occipital cortex of postnatal rats. Synapse 8, 41–48.

    Article  PubMed  CAS  Google Scholar 

  22. Komuro, H., and Rakic, P. (1993) Modulation of neuronal migration by NMDA receptors. Science 260, 95–97.

    Article  PubMed  CAS  Google Scholar 

  23. Olney, J.W., and Farber, N.B. (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52, 998–1007.

    PubMed  CAS  Google Scholar 

  24. Harrison, P.J., and Owen, M.J. (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361, 417–419.

    Article  PubMed  CAS  Google Scholar 

  25. Schmitt, A., Fendt, M, Zink, M., Ebert, U., Starke, M., Berthold, M., Herb, A., Petroianu, G., Falkai, P., and Henn, F. (2007). Altered NMDA receptor expression and behaviour following postnatal hypoxia: potential relevance to schizophrenia. J Neural Transm 114: 239–248.

    Article  PubMed  CAS  Google Scholar 

  26. McNeil, T.F. (1988) Obstetric factors and perinatal injuries. In Tsuang M.T., and Simpson, J.C. (eds.), Handbook of schizophrenia, vol 3: Nosology, epidemiology and genetics. New York, NY, Elsevier, 319–344.

    Google Scholar 

  27. Weinberger, D.R. (1995) Neurodevelopmental perspectives on schizophrenia. In Blood, F.E., and Kupfer, D.J. (eds.), Psychopharmacology: The fourth generation of progress. New York, NY, Raven Press Ltd., 1171–1183.

    Google Scholar 

  28. Goodman, R. (1988): Are complications of pregnancy and birth causes of schizophrenia? Dev Med Child Neurol 30, 391–395.

    Article  PubMed  CAS  Google Scholar 

  29. Cannon, T.E., and Mednick, S.A. (1991) Fetal neural development and adult schizophrenia: An elaboration of the paradigm. In Mednick, S.A., Cannon, T.D., Barr, C.E., and Lyon, M. (eds.), Fetal neural development and adult schizophrenia. Cambridge, Cambridge University Press, 227–237.

    Google Scholar 

  30. Braff, D.L. (1992) Reply to cognitive therapy and schizophrenia. Schizophr Bull 18, 37–38.

    PubMed  CAS  Google Scholar 

  31. Swerdlow, N.R., Geyer, M.A., and Braff, D.L. (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156, 194–215.

    Article  CAS  Google Scholar 

  32. Lipska, B.K., Aultman, J.M., Verma, A., Weinberger, D.R., and Moghaddam, B. (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27, 47–54.

    Article  PubMed  Google Scholar 

  33. Lipska, B.K., Al-Amin, H.A., and Weinberger, D.R. (1998) Excitotoxic lesions of the rat medial prefrontal cortex. Effects on abnormal behaviors associated with neonatal hippocampal damage. Neuropsychopharmacology 19, 451–464.

    Article  PubMed  CAS  Google Scholar 

  34. Sandager-Nielsen, K., Andersen, M.B., Sager, T.N., Werge, T., and Scheel-Kruger, J. (2004) Effects of postnatal anoxia on striatal dopamine metabolism and prepulse inhibition in rats. Pharmacol Biochem Behav 77, 767–774.

    Article  PubMed  CAS  Google Scholar 

  35. Hermans, R.H., and Longo, L.D. (1994) Altered catecholaminergic behavioral and hormonal responses in rats following early postnatal hypoxia. Physiol Behav 55, 469–475.

    Article  PubMed  CAS  Google Scholar 

  36. Fendt, M., Lex, A., Falkai, P., Henn, F.A., and Schmitt, A. (2008) Behavioural alterations in rats following neonatal hypoxia and effects of clozapine: implications for schizophrenia. Pharmacopsychiatry 41(4),138–145.

    Article  PubMed  CAS  Google Scholar 

  37. Van den Buuse, M., Garner, B., and Koch, M. (2003) Neurodevelopmental animal models of schizophrenia: effects on prepulse inhibition. Curr Mol Med 3, 459–471.

    Article  PubMed  Google Scholar 

  38. Lipska, B.K., Halim, N.D., Segal, P.N., and Weinberger, D.R. (2002) Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22, 2835–2842.

    PubMed  CAS  Google Scholar 

  39. Eastwood, S.L., and Harrison, P.J. (2000) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5(4), 425–432.

    Article  PubMed  CAS  Google Scholar 

  40. Eastwood, S.L., and Harrison, P.J. (2001) Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55(5), 569–578.

    Article  PubMed  CAS  Google Scholar 

  41. Eastwood, S.L., and Harrison, P.J. (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73(23), 159–172.

    Article  PubMed  CAS  Google Scholar 

  42. Eastwood, S.L., Cairns, N.J., and Harrison, P.J. (2000) Synaptophysin gene expression in schizophrenia. Investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 176, 236–242.

    Article  PubMed  CAS  Google Scholar 

  43. Honer, W.G., Falkai, P., Bayer, T.A., Xie, J., Hu, L., Li, H.Y., Arango, V., Mann, J.J., Dwork, A.J., and Trimble, W.S. (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12(4), 349–356.

    Article  PubMed  Google Scholar 

  44. Knable, M.B., Barci, B.M., Webster, M.J., Meador-Woodruff, J., Torrey, E.F., and Stanley Neuropathology Consortium (2004) Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9(6), 609–620.

    Article  PubMed  CAS  Google Scholar 

  45. Kuromitsu, J., Yokoi, A., Kawai, T., Nagasu, T., Aizawa, T., Haga, S., and Ikeda, K. (2001) Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder. Brain Res Gene Expr Patterns 1(1), 17–21.

    Article  PubMed  CAS  Google Scholar 

  46. Sawada, K., Young, C.E., Barr, A.M., Longworth, K., Takahashi, S., Arango, V., Mann, J.J., Dwork, A.J., Falkai, P., Phillips, A.G., and Honer, W.G. (2002) Altered immunoreactivity of complexin protein in prefrontal cortex in severe mental illness. Mol Psychiatry 7(5), 484–492.

    Article  PubMed  CAS  Google Scholar 

  47. Sawada, K., Barr, A.M., Nakamura, M., Arima, K., Young, C.E., Dwork, A.J., Falkai, P., Phillips, A.G., and Honer, W.G. (2005.) Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 62(3), 263–272.

    Article  PubMed  CAS  Google Scholar 

  48. Sokolov, B.P., Tcherepanov, A.A., Haroutunian, V., and Davis, K.L. (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48(3), 184–196.

    Article  PubMed  CAS  Google Scholar 

  49. Brose, N. (2008) Altered complexin expression in psychiatric and neurological disorders: cause or consequence? Mol Cells 25(1), 7–19.

    PubMed  CAS  Google Scholar 

  50. Mellios, N., Huang, H.S., Baker, S.P., Galdzicka, M., Ginns, E., and Akbarian, S. (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  51. Hashimoto, T., Arion, D., Unger, T., Maldonado-Avilés, J.G., Morris, H.M., Volk, D.W., Mirnics, K., and Lewis, D.A. (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13(2), 147–161.

    Article  PubMed  CAS  Google Scholar 

  52. Rujescu, D., Ingason, A., Cichon, S., Pietiläinen, O.P., Barnes, M.R., Toulopoulou, T., Picchioni, M., Vassos, E., Ettinger, U., Bramon, E., Murray, R., Ruggeri, M., Tosato, S., Bonetto, C., Steinberg, S., Sigurdsson, E., Sigmundsson, T., Petursson, H., Gylfason, A., Olason, P.I., Hardarsson, G., Jonsdottir, G.A., Gustafsson, O., Fossdal, R., Giegling, I., Möller, H.J., Hartmann, A.M., Hoffmann, P., Crombie, C., Fraser, G., Walker, N., Lonnqvist, J., Suvisaari, J., Tuulio-Henriksson, A., Djurovic, S., Melle, I., Andreassen, O.A., Hansen, T., Werge, T., Kiemeney, L.A., Franke, B., Veltman, J., Buizer-Voskamp, J.E., GROUP Investigators, Sabatti, C., Ophoff, R.A., Rietschel, M., Nöthen, M.M., Stefansson, K., Peltonen, L., St Clair, D., Stefansson, H., and Collier, D.A. (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 18(5), 988–996.

    PubMed  CAS  Google Scholar 

  53. Fei, G., Guo, C., Sun, H.S., and Feng, Z.P. (2007) Chronic hypoxia stress-induced differential modulation of heat-shock protein 70 and presynaptic proteins. J Neurochem 100(1), 50–61.

    Article  PubMed  CAS  Google Scholar 

  54. Eastwood, S.L., Burnet, P.W., and Harrison, P.J. (2000) Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 36(3), 167–177.

    Article  PubMed  CAS  Google Scholar 

  55. Huang, X.F., Deng, C., and Zavitsanou, K. (2006) Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats. Neuropeptides 40(3), 213–219.

    Article  PubMed  CAS  Google Scholar 

  56. Sommer, U., Schmitt, A., Heck, M., Fendt, M., Zink, M., Petroianu, G., Nieselt, K., Symons, S., Lex, A., Herrera-Marschitz, M., Spanagel, R., Falkai, P., and Gebicke-Haerter, P. (2009) Differential expression of presynaptic genes in a rat model of postnatal hypoxia: Relevance to schizophrenia. Eur Arch Psych Clin Neurosci 260 (Suppl 2), S81–S89.

    Google Scholar 

  57. Schmitt, U., Dahmen, N., Fischer, V., Weigmann, H., Rao, M.L., Reuss, S., and Hiemke, C. (1999) Chronic oral haloperidol and clozapine in rats: A behavioral evaluation. Neuropsychobiology 39, 86–91.

    Article  PubMed  CAS  Google Scholar 

  58. Schmitt, A., Zink, M., Muller, B., May, B., Herb, A., Jatzko, A., Braus, D.F., and Henn, F.A. (2003a) Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Neurochem Res 28, 235–241.

    Article  PubMed  CAS  Google Scholar 

  59. Schmitt, A., Zink, M., Petroianu, G., May, B., Braus, D.F., and Henn, F.A. (2003b) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347, 81–84.

    Article  PubMed  CAS  Google Scholar 

  60. Zink, M., Schmitt, A., May, B., Muller, B., Braus, D.F., and Henn, F.A. (2004a) Differential effects of long-term treatment with clozapine or haloperidol on GABA transporter expression. Pharmacopsychiatry 37, 171–174.

    Article  PubMed  CAS  Google Scholar 

  61. Zink, M., Schmitt, A., May, B., Muller, B., Demirakca, T., Braus, D.F., and Henn, F.A. (2004b) Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Schizophr Res 66, 151–157.

    Article  PubMed  Google Scholar 

  62. Thor, D.H., and Holloway, W.R. (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96, 1000–1006.

    Article  Google Scholar 

  63. Paxinos, G., and Watson, C. (1986) The rat brain in stereotaxic coordinates, 2nd edition. San Diego, CA, Academic.

    Google Scholar 

  64. Zilles, K., and Schleicher, A. (1995) Correlative imaging of transmitter receptor distributions in human cortex. In Stumpf, W.E., and Solomon, H.F. (eds.), Autoradiography and correlative imaging. San Diego, CA, Academic, 277–307.

    Google Scholar 

  65. Zilles, K., Qu, M.S., Kohling, R., and Speckmann, E.J. (1999) Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience 94, 1051–1061.

    Article  PubMed  CAS  Google Scholar 

  66. Diehl, F., Grahlmann, S., Beier, M., and Hoheisel, J.D. (2001) Manufacturing DNA microarrays of high spot homogeneity and reduced background signal. Nucleic Acids Res 29, E38.

    Article  PubMed  CAS  Google Scholar 

  67. Koschmieder, A., Ma, D., Hoheisel, J., and Frohme, M. (2005) Construction of Libraries of Random External Controls (LOREC) for application in microarray experiments. Heidelberg, DKFZ, Degree Dissertation.

    Google Scholar 

  68. Yang, Y.H., Dudoit, S., Luu, P., and Speed, T.P. (2001) Normalization for cDNA microarray data. In Bittner, M.L., Chen, Y., Dorsel, A.N., and Dougherty, E.R. (eds.), Microarrays: Optical technologies and informatics. Proc SPIE 4266, 141–152.

    Google Scholar 

  69. Schadt, E.E., Li, C., Ellis, B., and Wong, W.H. (2001) Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem Suppl 37, 120–125.

    Article  Google Scholar 

  70. Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P. (2004) Rank Products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573, 83–92.

    Article  PubMed  CAS  Google Scholar 

  71. Susser, E.S., and Lin, S.P. (1992) Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry 49, 983–988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schmitt, A. et al. (2011). The Hypoxic Rat Model for Obstetric Complications in Schizophrenia. In: O'Donnell, P. (eds) Animal Models of Schizophrenia and Related Disorders. Neuromethods, vol 59. Humana Press. https://doi.org/10.1007/978-1-61779-157-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-157-4_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-156-7

  • Online ISBN: 978-1-61779-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics