Skip to main content

Optimal Practices for Surface-Tethered Single Molecule Total Internal Reflection Fluorescence Resonance Energy Transfer Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

Single molecule fluorescence microscopy can be used to follow the mechanics of molecular biology processes in real time. However, many factors, from flow cell preparation to improper data analysis can negatively impact single molecule fluorescence resonance energy transfer (smFRET) experiments. Here, we describe some best practices for ensuring that smFRET data are of the highest quality. In addition to instrumentation, we describe sample preparation and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Leuba, S. H. and Zlatanova, J. (Eds.) (2001) Biology at the single-molecule level, Pergamon, Amsterdam.

    Google Scholar 

  2. Ha, T. (2001) Methods 25, 78–86.

    Article  CAS  Google Scholar 

  3. Zheng, H., Goldner, L. S., and Leuba, S. H. (2007) Methods 41, 342–352.

    Article  CAS  Google Scholar 

  4. Zheng, H. C., Tomschik, M., Zlatanova, J., and Leuba, S. H. (2005) in “Protein-Protein Interactions, A Molecular Cloning Manual, 2nd Ed.” (Golemis, E., and Adams, P., Eds.), pp. 429–444, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  5. Gell, C., Brockwell, D., and Smith, A. (2006) Handbook of Single Molecule Fluorescence Spectroscopy, Oxford University Press, Oxford, UK.

    Google Scholar 

  6. Roy, R., Hohng, S., and Ha, T. (2008) Nat Methods 5, 507–516.

    Article  CAS  Google Scholar 

  7. Selvin, P. R. and Ha, T. (Eds.) (2008) Single molecule techniques: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  8. Axelrod, D., Burghardt, T. P., and Thompson, N. L. (1984) Annu Rev Biophys Bioeng 13, 247–268.

    Article  CAS  Google Scholar 

  9. Hermanson, G., T. (1996) Bioconjugate techniques, Academic Press, San Diego.

    Google Scholar 

  10. Eggeling, C., Widengren, J., Brand, L., Schaffer, J., Felekyan, S., and Seidel, C. A. (2006) J Phys Chem A 110, 2979–2995.

    Article  CAS  Google Scholar 

  11. Lakowicz, J. R. (2006) Principles of fluorescence spectroscopy. 3ed., Springer, New York.

    Google Scholar 

  12. Keilin, D., and Hartree, E. F. (1952) Biochem J 50, 331–341.

    CAS  Google Scholar 

  13. Reid, T. J., 3 rd, Murthy, M. R., Sicignano, A., Tanaka, N., Musick, W. D., and Rossmann, M. G. (1981) Proc Natl Acad Sci USA 78, 4767–4771.

    Article  CAS  Google Scholar 

  14. Joo, C. and Ha, T. (2008) in “Single-molecule techniques” (Selvin, P. R. and Ha, T., Eds.), pp. 3–36, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  15. Kapanidis, A. N., Lee, N. K., Laurence, T. A., Doose, S., Margeat, E., and Weiss, S. (2004) Proc Natl Acad Sci USA 101, 8936–8941.

    Article  CAS  Google Scholar 

  16. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., and Waggoner, A. S. (1993) Bioconjug Chem 4, 105–111.

    Article  CAS  Google Scholar 

  17. Burger, W. and Burge, M. J. (2008) Digital image processing: an algorithmic introduction using Java, Springer, New York.

    Google Scholar 

  18. Rasnik, I., McKinney, S. A., and Ha, T. (2006) Nat Methods 3, 891–893.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by RO1 GM077872 (S.H.L.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford H. Leuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fagerburg, M.V., Leuba, S.H. (2011). Optimal Practices for Surface-Tethered Single Molecule Total Internal Reflection Fluorescence Resonance Energy Transfer Analysis. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics