Skip to main content

Preparation of DNA Nanostructures with Repetitive Binding Motifs by Rolling Circle Amplification

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

A long one-dimensional single-stranded DNA (ssDNA) molecule with a periodic sequence motif is an attractive building block for DNA nanotechnology because it allows the positioning of oligonucleotide-labeled particles or molecules with high spatial resolution via molecular self-assembly simply by hybridization reactions. In vitro enzymatic isothermal rolling circle amplification (RCA) produces such long concatemeric ssDNA molecules. These are complementary in sequence to their circular template. In this chapter, the preparation of stretched and surface-attached RCA products at the single molecule level is described. The methods presented comprise the enzymatic circularization of a ssDNA oligonucleotide, the covalent coupling of amino-modified primers to carboxylated fluorescence beads, the preparation of a hydrophobic glass substrate, the RCA in a flow-through system, the postsynthetic staining and stretching of the RCA products as well as the microscopic observation of individual ssDNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., and Xu, S. Q. (1995) Rolling replication of short DNA circles Proc. Natl. Acad. Sci. U. S. A. 92, 4641–5.

    Google Scholar 

  2. Liu, D., Daubendiek, S. L., Zillman, M. A., Ryan, K., and Kool, E. T. (1996) Rolling ­circle DNA synthesis: Small circular oligonucleotides as efficient templates for DNA ­polymerases J. Am. Chem. Soc. 118, 1587–94.

    Google Scholar 

  3. Lizardi, P. M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D. C., and Ward, D. C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification Nat. Genet. 19, 225–32.

    Google Scholar 

  4. Schweitzer, B., Roberts, S., Grimwade, B., Shao, W., Wang, M., Fu, Q., Shu, Q., Laroche, I., Zhou, Z., Tchernev, V. T., Christiansen, J., Velleca, M., and Kingsmore, S., F. (2002) Muliplexed protein profiling on microarrays by rolling-circle amplification Nat. Biotechnol. 20, 359–65.

    Google Scholar 

  5. Beyer, S., Nickels, P., and Simmel, F. C. (2005) Periodic DNA nanotemplates synthesized by rolling circle amplification Nano Lett. 5, 719–22.

    Google Scholar 

  6. Deng, Z., Tian, Y., Lee, S. H., Ribbe, A. E., and Mao, C. (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays Angew. Chem., Int. Ed. 44, 3582–5.

    Google Scholar 

  7. Zhao, W., Gao, Y., Kandadai, S. A., Brook, M. A., and Li, Y. (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: Towards novel scaffolds for three-dimensional periodic nanoassemblies Angew. Chem., Int. Ed. 45, 2409–13.

    Google Scholar 

  8. Cheglakov, Z., Weizmann, Y., Braunschweig, A. B., Wilner, O. I., and Willner, I. (2008) Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers Angew Chem., Int. Ed. 47, 126–30.

    Google Scholar 

  9. Zhao, W., Ali, M. M., Brook, M. A., and Li, Y. (2008) Rolling circle amplification: Applications in nanotechnology and ­biodetection with functional nucleic acids Angew. Chem., Int. Ed. 47, 6330–7.

    Google Scholar 

  10. Reiß, E., Hölzel, R., Nickisch-Rosenegk, M. v., and Bier, F. F. (2006) Rolling circle amplification for spatially directed synthesis of a solid phase anchored single-stranded DNA molecule, in DNA-Based Nanoscale Integration: International Symposium on DNA-Based Nanoscale Integration, Jena, Germany 18–20 May 2006 (Fritzsche, W., ed.) 2006, AIP Conference Proceedings 859, American Institute of Physics, Melville, NY, pp. 25–30.

    Google Scholar 

  11. Frieden, M., Pedroso, E., and Kool, E. T. (1999) Tightening the belt on polymerases: Evaluating the physical constraints on enzyme substrate size Angew. Chem., Int. Ed. 38, 3654–7.

    Google Scholar 

  12. Diegelman, A. M., and Kool, E. T. (2001) Chemical and enzymatic methods for preparing circular single-stranded DNAs Curr Protoc Nucleic Acid Chem Chapter 5, Unit 5.2.

    Google Scholar 

  13. Epicentre Biotechnologies. Protocol for CircLigase™ ssDNA Ligase (continued Lit. #222) [homepage on the Internet]. No date [cited 2009 Jan 15]. Available from: http://www.epibio.com/litindex.asp.

    Google Scholar 

  14. Blanco, L., Bernad, A., Lázaro, J. M., Martín, G., Garmendia, C., and Salas, M. (1989) Highly efficient DNA synthesis by the phage Phi 29 DNA polymerase. Symmetrical mode of DNA replication J. Biol. Chem. 264, 8935–40.

    Google Scholar 

  15. Reiß, E., Hölzel, R., and Bier, F. F. (2009) Synthesis and stretching of rolling circle amplification products in a flow-through system Small 5, 2316–22.

    Google Scholar 

  16. Feldkamp, U., Schroeder, H., and Niemeyer, C. M. (2006) Design and evaluation of single-stranded DNA carrier molecules for DNA-directed assembly J. Biomol. Struct. Dyn. 23, 657–66.

    Google Scholar 

  17. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., (Eds.) (1999) Short Protocols in Molecular Biology 4th ed., John Wiley & Sons, USA.

    Google Scholar 

  18. Dean, F. B., Nelson, J. R., Giesler, T. L., and Lasken, R. S. (2001) Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification Genome Res. 11, 1095–9.

    Google Scholar 

Download references

Acknowledgments

The authors thank the group of C.M. Niemeyer (University of Dortmund) for communicating DNA oligonucleotide sequence information. This work was supported by the European Union’s sixth framework program, contract no. NMP4-CT-2004-013775, under the project name NUCAN (Nucleic Acid Based Nanostructures).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Reiß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reiß, E., Hölzel, R., Bier, F.F. (2011). Preparation of DNA Nanostructures with Repetitive Binding Motifs by Rolling Circle Amplification. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics