Skip to main content

High-Speed Atomic Force Microscopy and Biomolecular Processes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 736))

Abstract

Atomic force microscope (AFM) is unique in its capability to capture high-resolution images of biological samples in liquids. This capability will become more versatile to biological sciences if AFM additionally acquires an ability of high-speed imaging, because “direct and real-time visualization” is a straightforward and powerful means to understand biomolecular processes. However, the imaging speed of conventional AFM is too slow to capture moving protein molecules at high resolution. In order to fill this large gap, various efforts have been carried out in the past decade. In this chapter, the past efforts for increasing the scan rate and reduction of tip–sample interaction force of AFM and demonstration of direct visualization of biomolecular processes are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Müller, D. J., Fotiadis, D., Scheuring, S., Müller, S. A., and Engel, A. (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76, 1101–1111.

    Article  PubMed  Google Scholar 

  2. Ando, T., Uchihashi, T., and Fukuma, T. (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437.

    Article  CAS  Google Scholar 

  3. Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Miyagi, A., Taniguchi, M., and Yamashita, H. (2008) High-speed AFM for nano-visualization of biomolecular processes. Pflugers Arch. – Eur. J. Physiol. 456, 221–225.

    Google Scholar 

  4. Yamamoto, D., Uchihashi, T., Kodera, N., Yamashita, H., Nishikori, S., Ogura, T., Shibata, M., and Ando, T. (in press) High-speed Atomic Force Microscopy Techniques for Observing Dynamic Biomolecular Processes. Methods in Enzymology

    Google Scholar 

  5. Ando, T., Uchihashi, T., Kodera N., Miyagi, A., Nakakita R., Yamashita H., and Sakashita M. (2006) High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn J Appl Phys 45, 1897–1903.

    Article  CAS  Google Scholar 

  6. Yamashita, H., Kodera, N., Miyagi, A., Uchihashi, T., Yamamoto, D., and Ando, T. (2007) Tip-sample distance control using photo-thermal actuation of a small cantilever for high-speed atomic force microscopy. Rev Sci Instrum. 78, 083702 (5 pp)

    Google Scholar 

  7. Miyagi, A., Tsunaka, T., Uchihashi, T., Mayanagi, K., Hirose, S., Morikawa, K., and Ando, T. (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem. Phys. Chem. 9, 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto, D., Uchihashi, T., Kodera, N., and Ando, T. (2008) Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology 19, 384009 (9 pp).

    Google Scholar 

  9. Yamashita, H., Voïtchovsky, K., Uchihashi, T., Contera, S. A., Ryan, J. F., and Ando, T. (2009) Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J. Struct. Biol. 167, 153–158.

    Article  PubMed  CAS  Google Scholar 

  10. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B. (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692.

    Article  CAS  Google Scholar 

  11. Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.

    Article  CAS  Google Scholar 

  12. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A. (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98, 12468–12472.

    Article  PubMed  CAS  Google Scholar 

  13. Kitazawa, M., Shiotani, K., and Toda, A. (2003). Batch fabrication of sharpened silicon nitride tips. Jpn. J. Appl. Phys. 42, 4844  –  4847.

    Article  CAS  Google Scholar 

  14. Kodera, N., Yamashita, H., Ando, T. (2005) Active damping of the scanner for high-speed atomic force microscopy. Rev Sci Instrum. 76, 053708, (5 pp).

    Google Scholar 

  15. Schitter, G., and Stemmer, A. (2004) Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE Trans Control Systems Technol. 12, 449–454.

    Article  Google Scholar 

  16. Zou, Q., Leang, K. K., Sadoun, E., Reed, M. J., and Devasia, S. (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control 6, 164–178.

    Article  PubMed  Google Scholar 

  17. Morita, S., Yamada, H., and Ando, T. (2007) Japan AFM roadmap 2006. Nanotechnol 18, 084001 (10 pp).

    Google Scholar 

  18. Kodera, N., Sakashita, M., and Ando, T. (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum. 77, 083704, (7 pp).

    Google Scholar 

  19. Stark, M., and Guckenberger, R. (1999) Fast low-cost phase detection setup for tapping-mode atomic force microscopy. Rev Sci Instrum. 70, 3614–3619.

    Article  CAS  Google Scholar 

  20. Uchihashi, T., Ando, T., Yamashita, H. (2006) Fast phase imaging in liquids using a rapid scan atomic force microscope. Appl. Phys. Lett. 89, 213112, (3 pp).

    Google Scholar 

  21. Yamaoto, D., Nagura, N., Omote, S., Taniguchi, M., and Ando, T., (in press) Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Biophys. J. 97.

    Google Scholar 

  22. Zhang, S. F., Rolfe, P., Wright, G., Lian, W., Milling, A. J., Tanaka, S., and Ishihara, K. (1998). Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomater. 19, 691–700.

    Article  CAS  Google Scholar 

  23. Vadgama, P. (2005). Surface biocompatibility. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 101, 14–52.

    Article  CAS  Google Scholar 

  24. Nakajima, H., Kunioka, K., Nakano, K., Shimizu, M., Seto, M., and Ando, T. (1997). Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochem. Biophys. Res. Commun. 234, 178–182.

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt, J. J., and Montemagno, C. D. (2004). Bionanomechanical systems, Annu. Rev. Mater. Res. 34, 315–337.

    Article  CAS  Google Scholar 

  26. Ando, T., Kodera, N., Maruyama, D., Takai, E., Saito, K., and Toda, A. (2002). A high-speed atomic force microscope for studying biological macromolecules in action, Jpn. J. Appl. Phys. 41, 4851–4856.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank N. Kodera, D. Yamamoto, M. Shibata, A. Miyagi, M. Taniguchi, H. Yamashita, and all previous students for their dedicated studies for developing high-speed AFM. This work was supported by the Japan Science and Technology Agency (JST; the CREST program and a Grant-in-Aid for Development of Systems, Technology for Advanced Measurement and Analysis) and the Japan Society for the Promotion of Science (JSPS; a Grant-in-Aid for Basic Research (S)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Uchihashi, T., Ando, T. (2011). High-Speed Atomic Force Microscopy and Biomolecular Processes. In: Braga, P., Ricci, D. (eds) Atomic Force Microscopy in Biomedical Research. Methods in Molecular Biology, vol 736. Humana Press. https://doi.org/10.1007/978-1-61779-105-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-105-5_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-104-8

  • Online ISBN: 978-1-61779-105-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics