Skip to main content

In Vivo Gene Delivery into hCD34+ Cells in a Humanized Mouse Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 737))

Abstract

In vivo targeted gene delivery to hematopoietic stem cells (HSCs) would mean a big step forward in the field of gene therapy. This would imply that the risk of cell differentiation and loss of homing/­engraftment is reduced, as there is no need for purification of the target cell. In vivo gene delivery also bypasses the issue that no precise markers that permit the isolation of a primitive hHSC exist up to now. Indeed, in vivo gene transfer could target all HSCs in their stem-cell niche, including those cells that are “missed” by the purification criteria. Moreover, for the majority of diseases, there is a requirement of a minimal number of gene-corrected cells to be reinfused to allow an efficient long-term engraftment. This requisite might become a limiting factor when treating children with inherited disorders, due to the low number of bone marrow (BM) CD34+ HSCs that can actually be isolated. These problems could be overcome by using efficient in vivo HSC-specific lentiviral vectors (LVs). Additionally, vectors for in vivo HSC transduction must be specific for the target cell, to avoid vector spreading while enhancing transduction efficiency. Of importance, a major barrier in LV transduction of HSCs is that 75% of HSCs are residing in the G0 phase of the cell cycle and are not very permissive for classical VSV-G-LV transduction. Therefore, we engineered “early-activating-cytokine (SCF or/and TPO)” displaying LVs that allowed a slight and transient stimulation of hCD34+ cells resulting in efficient lentiviral gene transfer while preserving the “stemness” of the targeted HSCs. The selective transduction of HSCs by these vectors was demonstrated by their capacity to promote selective transduction of CD34+ cells in in vitro-derived, long-term culture-initiating cell colonies and long-term NOD/SCID repopulating cells. A second generation of these “early-acting-cytokine”-displaying lentiviral vectors has now been developed that is fit for targeted in vivo gene delivery to hCD34+ cells. In the method presented here, we describe the in vivo gene delivery into hCD34+ cells by intramarrow injection of these new vectors into humanized BALB/c Rag2null/IL2rgc null (BALB/c RAGA) mice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., and Banerjee, U. (2007) The hematopoietic stem cell and its niche: a comparative view, Genes Dev 21, 3044–3060.

    Article  PubMed  CAS  Google Scholar 

  2. Orford, K. W., and Scadden, D. T. (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation, Nat Rev Genet 9, 115–128.

    Article  PubMed  CAS  Google Scholar 

  3. Cheshier, S. H., Morrison, S. J., Liao, X., and Weissman, I. L. (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells, Proc Natl Acad Sci U S A 96, 3120–3125.

    Article  PubMed  CAS  Google Scholar 

  4. Strauss, L. C., Rowley, S. D., La Russa, V. F., Sharkis, S. J., Stuart, R. K., and Civin, C. I. (1986) Antigenic analysis of hematopoiesis. V. Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells, Exp Hematol 14, 878–886.

    Google Scholar 

  5. Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M., and Peault, B. (1992) Isolation of a candidate human hematopoietic stem-cell population, Proc Natl Acad Sci U S A 89, 2804–2808.

    Article  PubMed  CAS  Google Scholar 

  6. Morrison, S. J., and Weissman, I. L. (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype, Immunity 1, 661–673.

    Article  PubMed  CAS  Google Scholar 

  7. Terstappen, L. W., Huang, S., Safford, M., Lansdorp, P. M., and Loken, M. R. (1991) Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells, Blood 77, 1218–1227.

    PubMed  CAS  Google Scholar 

  8. McKenzie, J. L., Gan, O. I., Doedens, M., and Dick, J. E. (2007) Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells, Exp Hematol 35, 1429–1436.

    Article  PubMed  CAS  Google Scholar 

  9. Kimura, T., Asada, R., Wang, J., Morioka, M., Matsui, K., Kobayashi, K., Henmi, K., Imai, S., Kita, M., Tsuji, T., Sasaki, Y., Ikehara, S., and Sonoda, Y. (2007) Identification of long-term repopulating potential of human cord blood-derived CD34-flt3- severe combined immunodeficiency-repopulating cells by intra-bone marrow injection, Stem Cells 25, 1348–1355.

    Article  PubMed  CAS  Google Scholar 

  10. Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., Grupp, S. A., Sieff, C. A., Mulligan, R. C., and Johnson, R. P. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species, Nat Med 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  11. Dao, M. A., Arevalo, J., and Nolta, J. A. (2003) Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution, Blood 101, 112–118.

    Article  PubMed  CAS  Google Scholar 

  12. Mizrak, D., Brittan, M., and Alison, M. R. (2008) CD133: molecule of the moment, J Pathol 214, 3–9.

    Article  PubMed  CAS  Google Scholar 

  13. Jokubaitis, V. J., Sinka, L., Driessen, R., Whitty, G., Haylock, D. N., Bertoncello, I., Smith, I., Peault, B., Tavian, M., and Simmons, P. J. (2008) Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues, Blood 111, 4055–4063.

    Article  PubMed  CAS  Google Scholar 

  14. Meyerrose, T. E., Herrbrich, P., Hess, D. A., and Nolta, J. A. (2003) Immune-deficient mouse models for analysis of human stem cells, Biotechniques 35, 1262–1272.

    PubMed  CAS  Google Scholar 

  15. Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X. L., Kato, I., Williams, D. A., and Dick, J. E. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy, Nat Med 2, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  16. Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C., and Eaves, C. J. (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers, Proc Natl Acad Sci U S A 87, 3584–3588.

    Article  PubMed  CAS  Google Scholar 

  17. Dick, J. E., Kamel-Reid, S., Murdoch, B., and Doedens, M. (1991) Gene transfer into normal human hematopoietic cells using in vitro and in vivo assays, Blood 78, 624–634.

    PubMed  CAS  Google Scholar 

  18. Eckfeldt, C. E., Mendenhall, E. M., and Verfaillie, C. M. (2005) The molecular repertoire of the ‘almighty’ stem cell, Nat Rev Mol Cell Biol 6, 726–737.

    Article  PubMed  CAS  Google Scholar 

  19. Santoni de Sio, F. R., Cascio, P., Zingale, A., Gasparini, M., and Naldini, L. (2006) Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction, Blood 107, 4257–4265.

    Article  PubMed  CAS  Google Scholar 

  20. Ailles, L., Schmidt, M., Santoni de Sio, F. R., Glimm, H., Cavalieri, S., Bruno, S., Piacibello, W., Von Kalle, C., and Naldini, L. (2002) Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells, Mol Ther 6, 615–626.

    Article  PubMed  CAS  Google Scholar 

  21. Guenechea, G., Gan, O. I., Inamitsu, T., Dorrell, C., Pereira, D. S., Kelly, M., Naldini, L., and Dick, J. E. (2000) Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors, Mol Ther 1, 566–573.

    Article  PubMed  CAS  Google Scholar 

  22. Sutton, R. E., Reitsma, M. J., Uchida, N., and Brown, P. O. (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent, J Virol 73, 3649–3660.

    PubMed  CAS  Google Scholar 

  23. Woods, N. B., Bottero, V., Schmidt, M., von Kalle, C., and Verma, I. M. (2006) Gene therapy: therapeutic gene causing lymphoma, Nature 440, 1123.

    Article  PubMed  CAS  Google Scholar 

  24. Capotondo, A., Cesani, M., Pepe, S., Fasano, S., Gregori, S., Tononi, L., Venneri, M. A., Brambilla, R., Quattrini, A., Ballabio, A., Cosma, M. P., Naldini, L., and Biffi, A. (2007) Safety of arylsulfatase A overexpression for gene therapy of metachromatic leukodystrophy, Hum Gene Ther 18, 821–836.

    Article  PubMed  CAS  Google Scholar 

  25. Voermans, C., Gerritsen, W. R., von dem Borne, A. E., and van der Schoot, C. E. (1999) Increased migration of cord blood-derived CD34+ cells, as compared to bone marrow and mobilized peripheral blood CD34+ cells across uncoated or fibronectin-coated filters, Exp Hematol 27, 1806–1814.

    Article  PubMed  CAS  Google Scholar 

  26. Ahmed, F., Ings, S. J., Pizzey, A. R., Blundell, M. P., Thrasher, A. J., Ye, H. T., Fahey, A., Linch, D. C., and Yong, K. L. (2004) Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model, Blood 103, 2079–2087.

    Article  PubMed  CAS  Google Scholar 

  27. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., and Lapidot, T. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4, Science 283, 845–848.

    Article  PubMed  CAS  Google Scholar 

  28. Sorrentino, B. P. (2004) Clinical strategies for expansion of haematopoietic stem cells, Nat Rev Immunol 4, 878–888.

    Article  PubMed  CAS  Google Scholar 

  29. Ueda, T., Yoshida, M., Yoshino, H., Kobayashi, K., Kawahata, M., Ebihara, Y., Ito, M., Asano, S., Nakahata, T., and Tsuji, K. (2001) Hematopoietic capability of CD34+ cord blood cells: a comparison with CD34+ adult bone marrow cells, Int J Hematol 73, 457–462.

    Article  PubMed  CAS  Google Scholar 

  30. Piacibello, W., Gammaitoni, L., Bruno, S., Gunetti, M., Fagioli, F., Cavalloni, G., and Aglietta, M. (2000) Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells, J Hematother Stem Cell Res 9, 945–956.

    Article  PubMed  CAS  Google Scholar 

  31. Luens, K. M., Travis, M. A., Chen, B. P., Hill, B. L., Scollay, R., and Murray, L. J. (1998) Thrombopoietin, kit ligand, and flk2/flt3 ligand together induce increased numbers of primitive hematopoietic progenitors from human CD34+Thy-1+Lin- cells with preserved ability to engraft SCID-hu bone, Blood 91, 1206–1215.

    PubMed  CAS  Google Scholar 

  32. Chen, B. P., Galy, A., Kyoizumi, S., Namikawa, R., Scarborough, J., Webb, S., Ford, B., Cen, D. Z., and Chen, S. C. (1994) Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice, Blood 84, 2497–2505.

    PubMed  CAS  Google Scholar 

  33. Baum, C., Dullmann, J., Li, Z., Fehse, B., Meyer, J., Williams, D. A., and von Kalle, C. (2003) Side effects of retroviral gene transfer into hematopoietic stem cells, Blood 101, 2099–2114.

    Article  PubMed  CAS  Google Scholar 

  34. Sandrin, V., Boson, B., Salmon, P., Gay, W., Negre, D., Le Grand, R., Trono, D., and Cosset, F. L. (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates, Blood 100, 823–832.

    Article  PubMed  CAS  Google Scholar 

  35. Verhoeyen, E., and Cosset, F. L. (2004) Surface-engineering of lentiviral vectors, J Gene Med 6 Suppl 1, S83–94.

    Google Scholar 

  36. Thoren, L. A., Liuba, K., Bryder, D., Nygren, J. M., Jensen, C. T., Qian, H., Antonchuk, J., and Jacobsen, S. E. (2008) Kit regulates maintenance of quiescent hematopoietic stem cells, J Immunol 180, 2045–2053.

    PubMed  CAS  Google Scholar 

  37. Verhoeyen, E., Wiznerowicz, M., Olivier, D., Izac, B., Trono, D., Dubart-Kupperschmitt, A., and Cosset, F. L. (2005) Novel lentiviral vectors displaying “early-acting cytokines” selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells, Blood 106, 3386–3395.

    Article  PubMed  CAS  Google Scholar 

  38. Roep, B. O., Atkinson, M., and von Herrath, M. (2004) Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes, Nat Rev Immunol 4, 989–997.

    Article  PubMed  CAS  Google Scholar 

  39. Bosma, G. C., Custer, R. P., and Bosma, M. J. (1983) A severe combined immunodeficiency mutation in the mouse, Nature 301, 527–530.

    Article  PubMed  CAS  Google Scholar 

  40. Gotoh, M., Takasu, H., Harada, K., and Yamaoka, T. (2002) Development of HLA-A2402/K(b) transgenic mice, Int J Cancer 100, 565–570.

    Article  PubMed  CAS  Google Scholar 

  41. Krimpenfort, P., Rudenko, G., Hochstenbach, F., Guessow, D., Berns, A., and Ploegh, H. (1987) Crosses of two independently derived transgenic mice demonstrate functional complementation of the genes encoding heavy (HLA-B27) and light (beta 2-microglobulin) chains of HLA class I antigens, EMBO J 6, 1673–1676.

    PubMed  CAS  Google Scholar 

  42. Banuelos, S. J., Shultz, L. D., Greiner, D. L., Burzenski, L. M., Gott, B., Lyons, B. L., Rossini, A. A., and Appel, M. C. (2004) Rejection of human islets and human HLA-A2.1 transgenic mouse islets by alloreactive human lymphocytes in immunodeficient NOD-scid and NOD-Rag1(null)Prf1(null) mice, Clin Immunol 112, 273–283.

    Google Scholar 

  43. Bock, T. A., Orlic, D., Dunbar, C. E., Broxmeyer, H. E., and Bodine, D. M. (1995) Improved engraftment of human hematopoietic cells in severe combined immunodeficient (SCID) mice carrying human cytokine transgenes, J Exp Med 182, 2037–2043.

    Article  PubMed  CAS  Google Scholar 

  44. Takaki, T., Marron, M. P., Mathews, C. E., Guttmann, S. T., Bottino, R., Trucco, M., DiLorenzo, T. P., and Serreze, D. V. (2006) HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes, J Immunol 176, 3257–3265.

    PubMed  CAS  Google Scholar 

  45. Mosier, D. E., Gulizia, R. J., Baird, S. M., and Wilson, D. B. (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency, Nature 335, 256–259.

    Article  PubMed  CAS  Google Scholar 

  46. McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., and Weissman, I. L. (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function, Science 241, 1632–1639.

    Article  PubMed  CAS  Google Scholar 

  47. Lapidot, T., Pflumio, F., Doedens, M., Murdoch, B., Williams, D. E., and Dick, J. E. (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice, Science 255, 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  48. Christianson, S. W., Greiner, D. L., Schweitzer, I. B., Gott, B., Beamer, G. L., Schweitzer, P. A., Hesselton, R. M., and Shultz, L. D. (1996) Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6 J-scid mice and in C57BL/6 J-scid bg mice, Cell Immunol 171, 186–199.

    PubMed  CAS  Google Scholar 

  49. Greiner, D. L., Hesselton, R. A., and Shultz, L. D. (1998) SCID mouse models of human stem cell engraftment, Stem Cells 16, 166–177.

    Article  PubMed  CAS  Google Scholar 

  50. Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., and Bosma, M. J. (1988) Evidence of functional lymphocytes in some (leaky) scid mice, J Exp Med 167, 1016–1033.

    Article  PubMed  CAS  Google Scholar 

  51. Fulop, G. M., and Phillips, R. A. (1990) The scid mutation in mice causes a general defect in DNA repair, Nature 347, 479–482.

    Article  PubMed  CAS  Google Scholar 

  52. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes, Cell 68, 869–877.

    Article  PubMed  CAS  Google Scholar 

  53. Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., and et al. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement, Cell 68, 855–867.

    Article  PubMed  CAS  Google Scholar 

  54. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., McKenna, S., Mobraaten, L., Rajan, T. V., Greiner, D. L., and et al. (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice, J Immunol 154, 180–191.

    PubMed  CAS  Google Scholar 

  55. Hesselton, R. M., Greiner, D. L., Mordes, J. P., Rajan, T. V., Sullivan, J. L., and Shultz, L. D. (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice, J Infect Dis 172, 974–982.

    Article  PubMed  CAS  Google Scholar 

  56. Lowry, P. A., Shultz, L. D., Greiner, D. L., Hesselton, R. M., Kittler, E. L., Tiarks, C. Y., Rao, S. S., Reilly, J., Leif, J. H., Ramshaw, H., Stewart, F. M., and Quesenberry, P. J. (1996) Improved engraftment of human cord blood stem cells in NOD/LtSz-scid/scid mice after irradiation or multiple-day injections into unirradiated recipients, Biol Blood Marrow Transplant 2, 15–23.

    PubMed  CAS  Google Scholar 

  57. Pflumio, F., Izac, B., Katz, A., Shultz, L. D., Vainchenker, W., and Coulombel, L. (1996) Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells, Blood 88, 3731–3740.

    PubMed  CAS  Google Scholar 

  58. Takizawa, H., and Manz, M. G. (2007) Macrophage tolerance: CD47-SIRP-alpha-mediated signals matter, Nat Immunol 8, 1287–1289.

    Article  PubMed  CAS  Google Scholar 

  59. Takenaka, K., Prasolava, T. K., Wang, J. C., Mortin-Toth, S. M., Khalouei, S., Gan, O. I., Dick, J. E., and Danska, J. S. (2007) Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells, Nat Immunol 8, 1313–1323.

    Article  PubMed  CAS  Google Scholar 

  60. Piganelli, J. D., Martin, T., and Haskins, K. (1998) Splenic macrophages from the NOD mouse are defective in the ability to present antigen, Diabetes 47, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  61. Ogasawara, K., Hamerman, J. A., Hsin, H., Chikuma, S., Bour-Jordan, H., Chen, T., Pertel, T., Carnaud, C., Bluestone, J. A., and Lanier, L. L. (2003) Impairment of NK cell function by NKG2D modulation in NOD mice, Immunity 18, 41–51.

    Article  PubMed  CAS  Google Scholar 

  62. O’Brien, B. A., Huang, Y., Geng, X., Dutz, J. P., and Finegood, D. T. (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced, Diabetes 51, 2481–2488.

    Article  PubMed  Google Scholar 

  63. Greiner, D. L., Shultz, L. D., Yates, J., Appel, M. C., Perdrizet, G., Hesselton, R. M., Schweitzer, I., Beamer, W. G., Shultz, K. L., Pelsue, S. C., and et al. (1995) Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice, Am J Pathol 146, 888–902.

    Google Scholar 

  64. Dorshkind, K., Pollack, S. B., Bosma, M. J., and Phillips, R. A. (1985) Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid), J Immunol 134, 3798–3801.

    PubMed  CAS  Google Scholar 

  65. Christianson, S. W., Greiner, D. L., Hesselton, R. A., Leif, J. H., Wagar, E. J., Schweitzer, I. B., Rajan, T. V., Gott, B., Roopenian, D. C., and Shultz, L. D. (1997) Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice, J Immunol 158, 3578–3586.

    PubMed  CAS  Google Scholar 

  66. Shultz, L. D., Banuelos, S., Lyons, B., Samuels, R., Burzenski, L., Gott, B., Lang, P., Leif, J., Appel, M., Rossini, A., and Greiner, D. L. (2003) NOD/LtSz-Rag1nullPfpnull mice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment, Transplantation 76, 1036–1042.

    Article  PubMed  Google Scholar 

  67. Prochazka, M., Gaskins, H. R., Shultz, L. D., and Leiter, E. H. (1992) The nonobese ­diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency, Proc Natl Acad Sci U S A 89, 3290–3294.

    Article  PubMed  CAS  Google Scholar 

  68. Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., and Harada, M. (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice, Blood 106, 1565–1573.

    Article  PubMed  CAS  Google Scholar 

  69. Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., Ueyama, Y., Koyanagi, Y., Sugamura, K., Tsuji, K., Heike, T., and Nakahata, T. (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells, Blood 100, 3175–3182.

    Article  PubMed  CAS  Google Scholar 

  70. Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S. D., King, M., Mangada, J., Greiner, D. L., and Handgretinger, R. (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells, J Immunol 174, 6477–6489.

    PubMed  CAS  Google Scholar 

  71. Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., and Manz, M. G. (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice, Science 304, 104–107.

    Article  PubMed  CAS  Google Scholar 

  72. Cao, X., Shores, E. W., Hu-Li, J., Anver, M. R., Kelsall, B. L., Russell, S. M., Drago, J., Noguchi, M., Grinberg, A., Bloom, E. T., and et al. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain, Immunity 2, 223–238.

    Article  PubMed  CAS  Google Scholar 

  73. DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A., and Rajewsky, K. (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain, Proc Natl Acad Sci U S A 92, 377–381.

    Article  PubMed  CAS  Google Scholar 

  74. Leonard, W. J. (1996) Dysfunctional cytokine receptor signaling in severe combined immunodeficiency, J Investig Med 44, 304–311.

    PubMed  CAS  Google Scholar 

  75. Jacobs, H., Krimpenfort, P., Haks, M., Allen, J., Blom, B., Demolliere, C., Kruisbeek, A., Spits, H., and Berns, A. (1999) PIM1 reconstitutes thymus cellularity in interleukin 7- and common gamma chain-mutant mice and permits thymocyte maturation in Rag- but not CD3gamma-deficient mice, J Exp Med 190, 1059–1068.

    Article  PubMed  CAS  Google Scholar 

  76. Ohbo, K., Suda, T., Hashiyama, M., Mantani, A., Ikebe, M., Miyakawa, K., Moriyama, M., Nakamura, M., Katsuki, M., Takahashi, K., Yamamura, K., and Sugamura, K. (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain, Blood 87, 956–967.

    PubMed  CAS  Google Scholar 

  77. Shultz, L. D., Ishikawa, F., and Greiner, D. L. (2007) Humanized mice in translational biomedical research, Nat Rev Immunol 7, 118–130.

    Article  PubMed  CAS  Google Scholar 

  78. Hiramatsu, H., Nishikomori, R., Heike, T., Ito, M., Kobayashi, K., Katamura, K., and Nakahata, T. (2003) Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model, Blood 102, 873–880.

    Article  PubMed  CAS  Google Scholar 

  79. Yahata, T., Ando, K., Nakamura, Y., Ueyama, Y., Shimamura, K., Tamaoki, N., Kato, S., and Hotta, T. (2002) Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice, J Immunol 169, 204–209.

    PubMed  CAS  Google Scholar 

  80. Gimeno, R., Weijer, K., Voordouw, A., Uittenbogaart, C. H., Legrand, N., Alves, N. L., Wijnands, E., Blom, B., and Spits, H. (2004) Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells, Blood 104, 3886–3893.

    Article  PubMed  CAS  Google Scholar 

  81. Legrand, N., Cupedo, T., van Lent, A. U., Ebeli, M. J., Weijer, K., Hanke, T., and Spits, H. (2006) Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in “human immune ­system” Rag2(-/-)gammac(-/-) mice, Blood 108, 238–245.

    Article  PubMed  CAS  Google Scholar 

  82. Berges, B. K., Wheat, W. H., Palmer, B. E., Connick, E., and Akkina, R. (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model, Retrovirology 3, 76.

    Article  PubMed  Google Scholar 

  83. Mazurier, F., Doedens, M., Gan, O. I., and Dick, J. E. (2003) Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells, Nat Med 9, 959–963.

    Article  PubMed  CAS  Google Scholar 

  84. Wang, J., Kimura, T., Asada, R., Harada, S., Yokota, S., Kawamoto, Y., Fujimura, Y., Tsuji, T., Ikehara, S., and Sonoda, Y. (2003) SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection, Blood 101, 2924–2931.

    Article  PubMed  CAS  Google Scholar 

  85. Schoeberlein, A., Schatt, S., Troeger, C., Surbek, D., Holzgreve, W., and Hahn, S. (2004) Engraftment kinetics of human cord blood and murine fetal liver stem cells following in utero transplantation into immunodeficient mice, Stem Cells Dev 13, 677–684.

    Article  PubMed  Google Scholar 

  86. Kuci, S., Wessels, J. T., Buhring, H. J., Schilbach, K., Schumm, M., Seitz, G., Loffler, J., Bader, P., Schlegel, P. G., Niethammer, D., and Handgretinger, R. (2003) Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells, Blood 101, 869–876.

    Article  PubMed  CAS  Google Scholar 

  87. de Wynter, E. A., Buck, D., Hart, C., Heywood, R., Coutinho, L. H., Clayton, A., Rafferty, J. A., Burt, D., Guenechea, G., Bueren, J. A., Gagen, D., Fairbairn, L. J., Lord, B. I., and Testa, N. G. (1998) CD34  +  AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors, Stem Cells 16, 387–396.

    Article  PubMed  Google Scholar 

  88. Bhatia, M., Wang, J. C., Kapp, U., Bonnet, D., and Dick, J. E. (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice, Proc Natl Acad Sci U S A 94, 5320–5325.

    Article  PubMed  CAS  Google Scholar 

  89. Bonnet, D., Bhatia, M., Wang, J. C., Kapp, U., and Dick, J. E. (1999) Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice, Bone Marrow Transplant 23, 203–209.

    Article  PubMed  CAS  Google Scholar 

  90. Kim, D. K., Fujiki, Y., Fukushima, T., Ema, H., Shibuya, A., and Nakauchi, H. (1999) Comparison of hematopoietic activities of human bone marrow and umbilical cord blood CD34 positive and negative cells, Stem Cells 17, 286–294.

    Article  PubMed  CAS  Google Scholar 

  91. Ito, M., Kobayashi, K., and Nakahata, T. (2008) NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models, Curr Top Microbiol Immunol 324, 53–76.

    Article  PubMed  CAS  Google Scholar 

  92. Goldman, J. P., Blundell, M. P., Lopes, L., Kinnon, C., Di Santo, J. P., and Thrasher, A. J. (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain, Br J Haematol 103, 335–342.

    Article  PubMed  CAS  Google Scholar 

  93. Kirberg, J., Berns, A., and von Boehmer, H. (1997) Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules, J Exp Med 186, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  94. Huntington, N. D., and Di Santo, J. P. (2008) Humanized immune system (HIS) mice as a tool to study human NK cell development, Curr Top Microbiol Immunol 324, 109–124.

    Article  PubMed  CAS  Google Scholar 

  95. Baenziger, S., Tussiwand, R., Schlaepfer, E., Mazzucchelli, L., Heikenwalder, M., Kurrer, M. O., Behnke, S., Frey, J., Oxenius, A., Joller, H., Aguzzi, A., Manz, M. G., and Speck, R. F. (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice, Proc Natl Acad Sci U S A 103, 15951–15956.

    Article  PubMed  CAS  Google Scholar 

  96. Gorantla, S., Sneller, H., Walters, L., Sharp, J. G., Pirruccello, S. J., West, J. T., Wood, C., Dewhurst, S., Gendelman, H. E., and Poluektova, L. (2007) Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice, J Virol 81, 2700–2712.

    Article  PubMed  CAS  Google Scholar 

  97. Frecha, C., Costa, C., Negre, D., Gauthier, E., Russell, S. J., Cosset, F. L., and Verhoeyen, E. (2008) Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins, Blood 112, 4843–4852.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first two authors, Cecilia Frecha and Floriane Fusil, have equally contributed to the writing of this manuscript. Further, we would like to thank Caroline Costa for her excellent technical assistance and Dr. Mamoro Ito (CIEA, Kawasaki, Japan), and Taconic (Japan) for sharing the BALB/c-Rag2−/−γc−/− immunodeficient mice with us and the animal facility at the ENS de Lyon (PBES). Further, we would like to acknowledge the support by the following grants: the “Agence Nationale pour la Recherche contre le SIDA et les Hépatites Virales” (ANRS), the “Agence Nationale de la Recherche” (ANR), the “Association française pour la myopathie,” AFM and the European Community (FP7-HEALTH-2007-B/222878 “PERSIST”). C.F. is supported by an ANRS postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els Verhoeyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this protocol

Cite this protocol

Frecha, C., Fusil, F., Cosset, FL., Verhoeyen, E. (2011). In Vivo Gene Delivery into hCD34+ Cells in a Humanized Mouse Model. In: Merten, OW., Al-Rubeai, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 737. Humana Press. https://doi.org/10.1007/978-1-61779-095-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-095-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-094-2

  • Online ISBN: 978-1-61779-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics