Skip to main content

Chemical Modification of Small Interfering RNA

  • Protocol
  • First Online:
Book cover Antiviral RNAi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 721))

Abstract

Chemically synthesized siRNAs are widely used for gene silencing. For in vitro applications, stability, delivery, and immunological issues are rarely problematic, but for in vivo applications the situation is different. Limited stability, undesirable pharmacokinetic behaviour, and unanticipated side effects from the immune system call for more careful structural siRNA design and inclusion of chemical modifications at selected positions. Also the notion that siRNA induces significant off-target silencing of many non-related genes has promted new effective measures to enhance specificity. The scope of this review is to provide a simple guide to successful chemical and structural modification of siRNAs with improved activity, stability, specificity, and low toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    PubMed  CAS  Google Scholar 

  2. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.

    PubMed  CAS  Google Scholar 

  3. Dorsett, Y. and Tuschl, T. (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov, 3, 318–329.

    PubMed  CAS  Google Scholar 

  4. Jinek, M. and Doudna, J. A. (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature, 457, 405–412.

    PubMed  CAS  Google Scholar 

  5. Siomi, H. and Siomi, M. C. (2009) On the road to reading the RNA-interference code. Nature, 457, 396–404.

    PubMed  CAS  Google Scholar 

  6. Bertrand, J. R., Pottier, M., Vekris, A., Opolon, P., Maksimenko, A. and Malvy, C. (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun, 296, 1000–1004.

    PubMed  CAS  Google Scholar 

  7. Hutvagner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060.

    PubMed  CAS  Google Scholar 

  8. Yi, R., Qin, Y., Macara, I. G. and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011–3016.

    PubMed  CAS  Google Scholar 

  9. Zeng, Y. and Cullen, B. R. (2003) Sequence requirements for micro RNA processing and function in human cells. RNA, 9, 112–123.

    PubMed  CAS  Google Scholar 

  10. Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., Marion, P., Salazar, F. and Kay, M. A. (2006) Fatality in mice due to oversaturation of ­cellular microRNA/short hairpin RNA pathways. Nature, 441, 537–541.

    PubMed  CAS  Google Scholar 

  11. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 20, 6877–6888.

    PubMed  CAS  Google Scholar 

  12. Kim, D. H., Behlke, M. A., Rose, S. D., Chang, M. S., Choi, S. and Rossi, J. J. (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol, 23, 222–226.

    PubMed  CAS  Google Scholar 

  13. Amarzguioui, M., Lundberg, P., Cantin, E., Hagstrom, J., Behlke, M. A. and Rossi, J. J. (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc, 1, 508–517.

    PubMed  CAS  Google Scholar 

  14. Siolas, D., Lerner, C., Burchard, J., Ge, W., Linsley, P. S., Paddison, P. J., Hannon, G. J. and Cleary, M. A. (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol, 23, 227–231.

    PubMed  CAS  Google Scholar 

  15. Tanudji, M., Machalek, D., Arndt, G. M. and Rivory, L. (2010) Competition between siRNA duplexes: impact of RISC loading efficiency and comparison between conventional-21 bp and dicer-substrate siRNAs. Oligonucleotides 20, 27–32.

    Google Scholar 

  16. Reynolds, A., Anderson, E. M., Vermeulen, A., Fedorov, Y., Robinson, K., Leake, D., Karpilow, J., Marshall, W. S. and Khvorova, A. (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA, 12, 988–993.

    PubMed  CAS  Google Scholar 

  17. Ge, Q., Dallas, A., Ilves, H., Shorenstein, J., Behlke, M. A. and Johnston, B. H. (2010) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA, 16, 118–130.

    PubMed  CAS  Google Scholar 

  18. Ge, Q., Ilves, H., Dallas, A., Kumar, P., Shorenstein, J., Kazakov, S. A. and Johnston, B. H. (2010) Minimal-length short hairpin RNAs: The relationship of structure and RNAi activity. RNA, 16, 106–117.

    PubMed  CAS  Google Scholar 

  19. Chu, C. Y. and Rana, T. M. (2008) Potent RNAi by short RNA triggers. RNA, 14, 1714–1719.

    PubMed  CAS  Google Scholar 

  20. Prakash, T. P., Allerson, C. R., Dande, P., Vickers, T. A., Sioufi, N., Jarres, R., Baker, B. F., Swayze, E. E., Griffey, R. H. and Bhat, B. (2005) Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem, 48, 4247–4253.

    PubMed  CAS  Google Scholar 

  21. Czauderna, F., Fechtner, M., Dames, S., Aygun, H., Klippel, A., Pronk, G. J., Giese, K. and Kaufmann, J. (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res, 31, 2705–2716.

    PubMed  CAS  Google Scholar 

  22. Hohjoh, H. (2002) RNA interference (RNA(i)) induction with various types of synthetic oligonucleotide duplexes in cultured human cells. FEBS Lett, 521, 195–199.

    PubMed  CAS  Google Scholar 

  23. Hohjoh, H. (2004) Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett, 557, 193–198.

    PubMed  CAS  Google Scholar 

  24. Bramsen, J. B., Laursen, M. B., Damgaard, C. K., Lena, S. W., Babu, B. R., Wengel, J. and Kjems, J. (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res, 35, 5886–5897.

    PubMed  CAS  Google Scholar 

  25. Ladunga, I. (2007) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res, 35, 433–440.

    PubMed  CAS  Google Scholar 

  26. Huesken, D., Lange, J., Mickanin, C., Weiler, J., Asselbergs, F., Warner, J., Meloon, B., Engel, S., Rosenberg, A., Cohen, D. et al. (2005) Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol, 23, 995–1001.

    PubMed  CAS  Google Scholar 

  27. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat Biotechnol, 22, 326–330.

    PubMed  CAS  Google Scholar 

  28. Shabalina, S. A., Spiridonov, A. N. and Ogurtsov, A. Y. (2006) Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics, 7, 65.

    PubMed  Google Scholar 

  29. Jagla, B., Aulner, N., Kelly, P. D., Song, D., Volchuk, A., Zatorski, A., Shum, D., Mayer, T., De Angelis, D. A., Ouerfelli, O. et al. (2005) Sequence characteristics of functional siRNAs. RNA, 11, 864–872.

    PubMed  CAS  Google Scholar 

  30. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res, 32, 936–948.

    PubMed  CAS  Google Scholar 

  31. Li, W. and Cha, L. (2007) Predicting siRNA efficiency. Cell Mol Life Sci, 64, 1785–1792.

    PubMed  CAS  Google Scholar 

  32. Kretschmer-Kazemi Far, R. and Sczakiel, G. (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res, 31, 4417–4424.

    PubMed  CAS  Google Scholar 

  33. Yuan, B., Latek, R., Hossbach, M., Tuschl, T. and Lewitter, F. (2004) siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res, 32, W130–W134.

    PubMed  CAS  Google Scholar 

  34. Brown, K. M., Chu, C. Y. and Rana, T. M. (2005) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol, 12, 469–470.

    PubMed  CAS  Google Scholar 

  35. Schubert, S., Grunweller, A., Erdmann, V. A. and Kurreck, J. (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol, 348, 883–893.

    PubMed  CAS  Google Scholar 

  36. Overhoff, M., Alken, M., Far, R. K., Lemaitre, M., Lebleu, B., Sczakiel, G. and Robbins, I. (2005) Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol, 348, 871–881.

    PubMed  CAS  Google Scholar 

  37. Tafer, H., Ameres, S. L., Obernosterer, G., Gebeshuber, C. A., Schroeder, R., Martinez, J. and Hofacker, I. L. (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol, 26, 578–583.

    PubMed  CAS  Google Scholar 

  38. Holen, T. (2005) Mechanisms of RNAi: mRNA cleavage fragments may indicate stalled RISC. J RNAi Gene Silencing, 1, 21–25.

    PubMed  CAS  Google Scholar 

  39. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. and Patel, D. J. (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature, 456, 209–213.

    PubMed  CAS  Google Scholar 

  40. Aza-Blanc, P., Cooper, C. L., Wagner, K., Batalov, S., Deveraux, Q. L. and Cooke, M. P. (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell, 12, 627–637.

    PubMed  CAS  Google Scholar 

  41. Khvorova, A., Reynolds, A. and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209–216.

    PubMed  CAS  Google Scholar 

  42. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.

    PubMed  CAS  Google Scholar 

  43. Dykxhoorn, D. M., Schlehuber, L. D., London, I. M. and Lieberman, J. (2006) Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Proc Natl Acad Sci U S A, 103, 5953–5958.

    PubMed  CAS  Google Scholar 

  44. Ghosh, P., Dullea, R., Fischer, J. E., Turi, T. G., Sarver, R. W., Zhang, C., Basu, K., Das, S. K. and Poland, B. W. (2009) Comparing 2-nt 3′ overhangs against blunt-ended siRNAs: a systems biology based study. BMC Genomics, 10 Suppl 1, S17.

    PubMed  Google Scholar 

  45. Sano, M., Sierant, M., Miyagishi, M., Nakanishi, M., Takagi, Y. and Sutou, S. (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res, 36, 5812–5821.

    PubMed  CAS  Google Scholar 

  46. Vermeulen, A., Behlen, L., Reynolds, A., Wolfson, A., Marshall, W. S., Karpilow, J. and Khvorova, A. (2005) The contributions of dsRNA structure to Dicer specificity and efficiency. RNA, 11, 674–682.

    PubMed  CAS  Google Scholar 

  47. Rose, S. D., Kim, D. H., Amarzguioui, M., Heidel, J. D., Collingwood, M. A., Davis, M. E., Rossi, J. J. and Behlke, M. A. (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res, 33, 4140–4156.

    PubMed  CAS  Google Scholar 

  48. Chiu, Y. L. and Rana, T. M. (2003) siRNA function in RNAi: a chemical modification analysis. RNA, 9, 1034–1048.

    PubMed  CAS  Google Scholar 

  49. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. and Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol, 5, 834–839.

    PubMed  CAS  Google Scholar 

  50. Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. and Linsley, P. S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21, 635–637.

    PubMed  CAS  Google Scholar 

  51. Gao, S., Dagnaes-Hansen, F., Nielsen, E. J., Wengel, J., Besenbacher, F., Howard, K. A. and Kjems, J. (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther, 17, 1225–1233.

    PubMed  CAS  Google Scholar 

  52. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J. et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.

    PubMed  CAS  Google Scholar 

  53. Wilson, C. and Keefe, A. D. (2006) Building oligonucleotide therapeutics using non-natural chemistries. Curr Opin Chem Biol, 10, 607–614.

    PubMed  CAS  Google Scholar 

  54. Kurreck, J. (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem, 270, 1628–1644.

    PubMed  CAS  Google Scholar 

  55. Aboul-Fadl, T. (2005) Antisense oligonucleotides: the state of the art. Curr Med Chem, 12, 2193–2214.

    PubMed  CAS  Google Scholar 

  56. Amarzguioui, M., Holen, T., Babaie, E. and Prydz, H. (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res, 31, 589–595.

    PubMed  CAS  Google Scholar 

  57. Choung, S., Kim, Y. J., Kim, S., Park, H. O. and Choi, Y. C. (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun, 342, 919–927.

    PubMed  CAS  Google Scholar 

  58. Harborth, J., Elbashir, S. M., Vandenburgh, K., Manninga, H., Scaringe, S. A., Weber, K. and Tuschl, T. (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev, 13, 83–105.

    PubMed  CAS  Google Scholar 

  59. Braasch, D. A., Jensen, S., Liu, Y., Kaur, K., Arar, K., White, M. A. and Corey, D. R. (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry, 42, 7967–7975.

    PubMed  CAS  Google Scholar 

  60. Grunweller, A., Wyszko, E., Bieber, B., Jahnel, R., Erdmann, V. A. and Kurreck, J. (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res, 31, 3185–3193.

    PubMed  Google Scholar 

  61. Hall, A. H., Wan, J., Shaughnessy, E. E., Ramsay Shaw, B. and Alexander, K. A. (2004) RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res, 32, 5991–6000.

    PubMed  CAS  Google Scholar 

  62. Braasch, D. A., Paroo, Z., Constantinescu, A., Ren, G., Oz, O. K., Mason, R. P. and Corey, D. R. (2004) Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett, 14, 1139–1143.

    PubMed  CAS  Google Scholar 

  63. Krieg, A. M. and Stein, C. A. (1995) Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev, 5, 241.

    PubMed  CAS  Google Scholar 

  64. Overhoff, M. and Sczakiel, G. (2005) Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep, 6, 1176–1181.

    PubMed  CAS  Google Scholar 

  65. Detzer, A. and Sczakiel, G. (2009) Phosphorothioate-stimulated uptake of siRNA by mammalian cells: a novel route for delivery. Curr Top Med Chem, 9, 1109–1116.

    PubMed  CAS  Google Scholar 

  66. Iwase, R., Toyama, T. and Nishimori, K. (2007) Solid-phase synthesis of modified RNAs containing amide-linked oligoribonucleosides at their 3′-end and their application to siRNA. Nucleosides Nucleotides Nucleic Acids, 26, 1451–1454.

    PubMed  CAS  Google Scholar 

  67. Prakash, T. P., Kraynack, B., Baker, B. F., Swayze, E. E. and Bhat, B. (2006) RNA interference by 2′,5′-linked nucleic acid duplexes in mammalian cells. Bioorg Med Chem Lett, 16, 3238–3240.

    PubMed  CAS  Google Scholar 

  68. Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., Johnson, J. M., Lim, L., Karpilow, J., Nichols, K. et al. (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA, 12, 1197–1205.

    PubMed  CAS  Google Scholar 

  69. Kraynack, B. A. and Baker, B. F. (2006) Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA, 12, 163–176.

    PubMed  CAS  Google Scholar 

  70. Allerson, C. R., Sioufi, N., Jarres, R., Prakash, T. P., Naik, N., Berdeja, A., Wanders, L., Griffey, R. H., Swayze, E. E. and Bhat, B. (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem, 48, 901–904.

    PubMed  CAS  Google Scholar 

  71. Parrish, S., Fleenor, J., Xu, S., Mello, C. and Fire, A. (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell, 6, 1077–1087.

    PubMed  CAS  Google Scholar 

  72. Morrissey, D. V., Blanchard, K., Shaw, L., Jensen, K., Lockridge, J. A., Dickinson, B., McSwiggen, J. A., Vargeese, C., Bowman, K., Shaffer, C. S. et al. (2005) Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology, 41, 1349–1356.

    PubMed  CAS  Google Scholar 

  73. Layzer, J. M., McCaffrey, A. P., Tanner, A. K., Huang, Z., Kay, M. A. and Sullenger, B. A. (2004) In vivo activity of nuclease-­resistant siRNAs. RNA, 10, 766–771.

    PubMed  CAS  Google Scholar 

  74. Capodici, J., Kariko, K. and Weissman, D. (2002) Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol, 169, 5196–5201.

    PubMed  Google Scholar 

  75. Blidner, R. A., Hammer, R. P., Lopez, M. J., Robinson, S. O. and Monroe, W. T. (2007) Fully 2′-deoxy-2′-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem Biol Drug Des, 70, 113–122.

    PubMed  CAS  Google Scholar 

  76. Pirollo, K. F., Rait, A., Zhou, Q., Hwang, S. H., Dagata, J. A., Zon, G., Hogrefe, R. I., Palchik, G. and Chang, E. H. (2007) Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res, 67, 2938–2943.

    PubMed  CAS  Google Scholar 

  77. Hogrefe, R. I., Lebedev, A. V., Zon, G., Pirollo, K. F., Rait, A., Zhou, Q., Yu, W. and Chang, E. H. (2006) Chemically modified short interfering hybrids (siHYBRIDS): nanoimmunoliposome delivery in vitro and in vivo for RNAi of HER-2. Nucleosides Nucleotides Nucleic Acids, 25, 889–907.

    PubMed  CAS  Google Scholar 

  78. Ui-Tei, K., Naito, Y., Zenno, S., Nishi, K., Yamato, K., Takahashi, F., Juni, A. and Saigo, K. (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res, 36, 2136–2151.

    PubMed  CAS  Google Scholar 

  79. Odadzic, D., Bramsen, J. B., Smicius, R., Bus, C., Kjems, J. and Engels, J. W. (2008) Synthesis of 2′-O-modified adenosine building blocks and application for RNA interference. Bioorg Med Chem, 16, 518–529.

    PubMed  CAS  Google Scholar 

  80. Bramsen, J. B., Laursen, M. B., Nielsen, A. F., Hansen, T. B., Bus, C., Langkjær, N., Babu, B. R., Højland, T., Abramov, M., Van Aerschot, A. et al. (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res, 37, 2867–2881.

    PubMed  CAS  Google Scholar 

  81. Wengel, J., Petersen, M., Nielsen, K. E., Jensen, G. A., Hakansson, A. E., Kumar, R., Sorensen, M. D., Rajwanshi, V. K., Bryld, T. and Jacobsen, J. P. (2001) LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids, 20, 389–396.

    PubMed  CAS  Google Scholar 

  82. Srivastava, P., Barman, J., Pathmasiri, W., Plashkevych, O., Wenska, M. and Chattopadhyaya, J. (2007) Five- and six-membered conformationally locked 2′,4′-­carbocyclic ribo-thymidines: synthesis, structure, and biochemical studies. J Am Chem Soc, 129, 8362–8379.

    PubMed  CAS  Google Scholar 

  83. Hamada, M., Ohtsuka, T., Kawaida, R., Koizumi, M., Morita, K., Furukawa, H., Imanishi, T., Miyagishi, M. and Taira, K. (2002) Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev, 12, 301–309.

    PubMed  CAS  Google Scholar 

  84. Pradeepkumar, P. I., Amirkhanov, N. V. and Chattopadhyaya, J. (2003) Antisense oligonuclotides with oxetane-constrained cytidine enhance heteroduplex stability, and elicit satisfactory RNase H response as well as showing improved resistance to both exo and endonucleases. Org Biomol Chem, 1, 81–92.

    PubMed  CAS  Google Scholar 

  85. Kurreck, J., Wyszko, E., Gillen, C. and Erdmann, V. A. (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res, 30, 1911–1918.

    PubMed  CAS  Google Scholar 

  86. Fluiter, K., ten Asbroek, A. L., de Wissel, M. B., Jakobs, M. E., Wissenbach, M., Olsson, H., Olsen, O., Oerum, H. and Baas, F. (2003) In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res, 31, 953–962.

    PubMed  CAS  Google Scholar 

  87. Elmén, J., Thonberg, H., Ljungberg, K., Frieden, M., Westergaard, M., Xu, Y., Wahren, B., Liang, Z., Ørum, H., Koch, T. et al. (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res, 33, 439–447.

    PubMed  Google Scholar 

  88. Petersen, M. and Wengel, J. (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol, 21, 74–81.

    PubMed  CAS  Google Scholar 

  89. Glud, S. Z., Bramsen, J. B., Dagnaes-Hansen, F., Wengel, J., Howard, K. A., Nyengaard, J. R. and Kjems, J. (2009) Naked siLNA-mediated gene silencing of lung bronchoepithelium EGFP expression after intravenous administration. Oligonucleotides, 19, 163–168.

    PubMed  CAS  Google Scholar 

  90. Mook, O. R., Baas, F., de Wissel, M. B. and Fluiter, K. (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther, 6, 833–843.

    PubMed  CAS  Google Scholar 

  91. Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., de Fougerolles, A. et al. (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med, 11, 263–270.

    PubMed  CAS  Google Scholar 

  92. Dowler, T., Bergeron, D., Tedeschi, A. L., Paquet, L., Ferrari, N. and Damha, M. J. (2006) Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res, 34, 1669–1675.

    PubMed  CAS  Google Scholar 

  93. Fisher, M., Abramov, M., Van Aerschot, A., Rozenski, J., Dixit, V., Juliano, R. L. and Herdewijn, P. (2009) Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. Eur J Pharmacol, 606, 38–44.

    PubMed  CAS  Google Scholar 

  94. Watts, J. K., Choubdar, N., Sadalapure, K., Robert, F., Wahba, A. S., Pelletier, J., Pinto, B. M. and Damha, M. J. (2007) 2′-fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Res, 35, 1441–1451.

    PubMed  CAS  Google Scholar 

  95. Langkjær, N., Pasternak, A. and Wengel, J. (2009) UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem, 17, 5420–5425.

    PubMed  Google Scholar 

  96. Laursen, M. B., Pakula, M. M., Gao, S., Fluiter, K., Mook, O. R., Baas, F., Langkjaer, N., Wengel, S. L., Wengel, J., Kjems, J. et al. (2010) Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol BioSyst, 6, 862–870.

    PubMed  CAS  Google Scholar 

  97. Kenski, D. M., Cooper, A. J., Li, J. J., Willingham, A. T., Haringsma, H. J., Young, T. A., Kuklin, N. A., Jones, J. J., Cancilla, M. T., McMasters, D. R. et al. (2009) Analysis of acyclic nucleoside modifications in siRNAs finds sensitivity at position 1 that is restored by 5′-terminal phosphorylation both in vitro and in vivo. Nucleic Acids Res, 38, 660–671.

    PubMed  Google Scholar 

  98. Werk, D., Wengel, J., Lena, S. W., Grunert, H. P., Zeichhardt, H. and Kurreck, J. (2009) Application of small interfering RNAs modified by unlocked nucleic acid (UNA) to inhibit the heart-pathogenic coxsackievirus B3. FEBS Lett, 584, 591–598.

    Google Scholar 

  99. Bramsen, J. B., Pakula, M. M., Hansen, T. B., Bus, C., Langkjaer, N., Odadzic, D., Smicius, R., Wengel, S. L., Chattopadhyaya, J., Engels, J. W. et al. (2010) A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res, 38, 5761–5773.

    PubMed  CAS  Google Scholar 

  100. Dande, P., Prakash, T. P., Sioufi, N., Gaus, H., Jarres, R., Berdeja, A., Swayze, E. E., Griffey, R. H. and Bhat, B. (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem, 49, 1624–1634.

    PubMed  CAS  Google Scholar 

  101. Hoshika, S., Minakawa, N., Kamiya, H., Harashima, H. and Matsuda, A. (2005) RNA interference induced by siRNAs modified with 4′-thioribonucleosides in cultured mammalian cells. FEBS Lett, 579, 3115–3118.

    PubMed  CAS  Google Scholar 

  102. Hoshika, S., Minakawa, N., Shionoya, A., Imada, K., Ogawa, N. and Matsuda, A. (2007) Study of modification pattern-RNAi activity relationships by using siRNAs modified with 4′-thioribonucleosides. Chembio­c­em, 8, 2133–2138.

    PubMed  CAS  Google Scholar 

  103. Sipa, K., Sochacka, E., Kazmierczak-Baranska, J., Maszewska, M., Janicka, M., Nowak, G. and Nawrot, B. (2007) Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA, 13, 1301–1316.

    PubMed  CAS  Google Scholar 

  104. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M. et al. (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science, 314, 994–997.

    PubMed  Google Scholar 

  105. Koller, E., Propp, S., Murray, H., Lima, W., Bhat, B., Prakash, T. P., Allerson, C. R., Swayze, E. E., Marcusson, E. G. and Dean, N. M. (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res, 34, 4467–4476.

    PubMed  CAS  Google Scholar 

  106. Tsui, N. B., Ng, E. K. and Lo, Y. M. (2002) Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem, 48, 1647–1653.

    PubMed  CAS  Google Scholar 

  107. Chiu, Y. L. and Rana, T. M. (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell, 10, 549–561.

    PubMed  CAS  Google Scholar 

  108. Kennedy, S., Wang, D. and Ruvkun, G. (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature, 427, 645–649.

    PubMed  CAS  Google Scholar 

  109. Takabatake, Y., Isaka, Y., Mizui, M., Kawachi, H., Takahara, S. and Imai, E. (2007) Chemically modified siRNA prolonged RNA interference in renal disease. Biochem Biophys Res Commun, 363, 432–437.

    PubMed  CAS  Google Scholar 

  110. Haupenthal, J., Baehr, C., Zeuzem, S. and Piiper, A. (2007) RNAse A-like enzymes in serum inhibit the anti-neoplastic activity of siRNA targeting polo-like kinase 1. Int J Cancer, 121, 206–210.

    PubMed  CAS  Google Scholar 

  111. Haupenthal, J., Baehr, C., Kiermayer, S., Zeuzem, S. and Piiper, A. (2006) Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum. Biochem Pharmacol, 71, 702–710.

    PubMed  CAS  Google Scholar 

  112. Hickerson, R. P., Vlassov, A. V., Wang, Q., Leake, D., Ilves, H., Gonzalez-Gonzalez, E., Contag, C. H., Johnston, B. H. and Kaspar, R. L. (2008) Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides, 18, 345–354.

    PubMed  CAS  Google Scholar 

  113. Tourriere, H., Chebli, K. and Tazi, J. (2002) mRNA degradation machines in eukaryotic cells. Biochimie, 84, 821–837.

    PubMed  CAS  Google Scholar 

  114. Sorrentino, S. (1998) Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci, 54, 785–794.

    PubMed  CAS  Google Scholar 

  115. Probst, J., Brechtel, S., Scheel, B., Hoerr, I., Jung, G., Rammensee, H. G. and Pascolo, S. (2006) Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther, 4, 4.

    PubMed  Google Scholar 

  116. Zou, Y., Tiller, P., Chen, I. W., Beverly, M. and Hochman, J. (2008) Metabolite identification of small interfering RNA duplex by high-resolution accurate mass spectrometry. Rapid Commun Mass Spectrom, 22, 1871–1881.

    PubMed  CAS  Google Scholar 

  117. Song, E., Lee, S. K., Dykxhoorn, D. M., Novina, C., Zhang, D., Crawford, K., Cerny, J., Sharp, P. A., Lieberman, J., Manjunath, N. et al. (2003) Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol, 77, 7174–7181.

    PubMed  CAS  Google Scholar 

  118. Usher, D. A. (1969) On the mechanism of ribonuclease action. Proc Natl Acad Sci U S A, 62, 661–667.

    PubMed  CAS  Google Scholar 

  119. Zimmermann, T. S., Lee, A. C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M. N., Harborth, J., Heyes, J. A., Jeffs, L. B., John, M. et al. (2006) RNAi-mediated gene silencing in non-human primates. Nature, 441, 111–114.

    PubMed  CAS  Google Scholar 

  120. Nishina, K., Unno, T., Uno, Y., Kubodera, T., Kanouchi, T., Mizusawa, H. and Yokota, T. (2008) Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther, 16, 734–740.

    PubMed  CAS  Google Scholar 

  121. Turner, J. J., Jones, S. W., Moschos, S. A., Lindsay, M. A. and Gait, M. J. (2007) MALDI-TOF mass spectral analysis of siRNA degradation in serum confirms an RNAse A-like activity. Mol Biosyst, 3, 43–50.

    PubMed  CAS  Google Scholar 

  122. Qiu, L., Moreira, A., Kaplan, G., Levitz, R., Wang, J. Y., Xu, C. and Drlica, K. (1998) Degradation of hammerhead ribozymes by human ribonucleases. Mol Gen Genet, 258, 352–362.

    PubMed  CAS  Google Scholar 

  123. Volkov, A. A., Kruglova, N. S., Meschaninova, M. I., Venyaminova, A. G., Zenkova, M. A., Vlassov, V. V. and Chernolovskaya, E. L. (2009) Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. Oligonucleotides, 19, 191–202.

    PubMed  CAS  Google Scholar 

  124. Libonati, M. and Sorrentino, S. (1992) Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA. Mol Cell Biochem, 117, 139–151.

    PubMed  CAS  Google Scholar 

  125. Eder, P. S., DeVine, R. J., Dagle, J. M. and Walder, J. A. (1991) Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev, 1, 141–151.

    PubMed  CAS  Google Scholar 

  126. Minks, M. A., West, D. K., Benvin, S. and Baglioni, C. (1979) Structural requirements of double-stranded RNA for the activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J Biol Chem, 254, 10180–10183.

    PubMed  CAS  Google Scholar 

  127. Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K. and MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol, 23, 457–462.

    PubMed  CAS  Google Scholar 

  128. Sioud, M. (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol, 348, 1079–1090.

    PubMed  CAS  Google Scholar 

  129. Kariko, K., Bhuyan, P., Capodici, J. and Weissman, D. (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol, 172, 6545–6549.

    PubMed  CAS  Google Scholar 

  130. Sioud, M. (2009) Deciphering the code of innate immunity recognition of siRNAs. Methods Mol Biol, 487, 41–59.

    PubMed  CAS  Google Scholar 

  131. Meurs, E., Chong, K., Galabru, J., Thomas, N. S., Kerr, I. M., Williams, B. R. and Hovanessian, A. G. (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell, 62, 379–390.

    PubMed  CAS  Google Scholar 

  132. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S. and Fujita, T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 5, 730–737.

    PubMed  CAS  Google Scholar 

  133. Marques, J. T., Devosse, T., Wang, D., Zamanian-Daryoush, M., Serbinowski, P., Hartmann, R., Fujita, T., Behlke, M. A. and Williams, B. R. (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol, 24, 559–565.

    PubMed  CAS  Google Scholar 

  134. Kang, D. C., Gopalkrishnan, R. V., Wu, Q., Jankowsky, E., Pyle, A. M. and Fisher, P. B. (2002) mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A, 99, 637–642.

    PubMed  CAS  Google Scholar 

  135. Manche, L., Green, S. R., Schmedt, C. and Mathews, M. B. (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol, 12, 5238–5248.

    PubMed  CAS  Google Scholar 

  136. Puthenveetil, S., Whitby, L., Ren, J., Kelnar, K., Krebs, J. F. and Beal, P. A. (2006) Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification. Nucleic Acids Res, 34, 4900–5011.

    PubMed  CAS  Google Scholar 

  137. Kim, D. H., Longo, M., Han, Y., Lundberg, P., Cantin, E. and Rossi, J. J. (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol, 22, 321–325.

    PubMed  CAS  Google Scholar 

  138. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H. and Bauer, S. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303, 1526–1529.

    PubMed  CAS  Google Scholar 

  139. Gantier, M. P., Tong, S., Behlke, M. A., Xu, D., Phipps, S., Foster, P. S. and Williams, B. R. (2008) TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J Immunol, 180, 2117–2124.

    PubMed  CAS  Google Scholar 

  140. Zarember, K. A. and Godowski, P. J. (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol, 168, 554–561.

    PubMed  CAS  Google Scholar 

  141. Diebold, S. S., Massacrier, C., Akira, S., Paturel, C., Morel, Y. and Reis e Sousa, C. (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol, 36, 3256–3267.

    PubMed  CAS  Google Scholar 

  142. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. and Reis e Sousa, C. (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303, 1529–1531.

    PubMed  CAS  Google Scholar 

  143. Muzio, M., Bosisio, D., Polentarutti, N., D’amico, G., Stoppacciaro, A., Mancinelli, R., van’t Veer, C., Penton-Rol, G., Ruco, L. P., Allavena, P. et al. (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: Selective expression of TLR3 in dendritic cells. Journal of Immunology, 164, 5998–6004.

    CAS  Google Scholar 

  144. Kleinman, M. E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J. Z., Albuquerque, R. J. C., Yamasaki, S., Itaya, M., Pan, Y. Z. et al. (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 452, 591–597.

    PubMed  CAS  Google Scholar 

  145. Kariko, K., Bhuyan, P., Capodici, J., Ni, H., Lubinski, J., Friedman, H. and Weissman, D. (2004) Exogenous siRNA mediates sequence-independent gene suppression by signaling through toll-like receptor 3. Cells Tissues Organs, 177, 132–138.

    PubMed  CAS  Google Scholar 

  146. Alexopoulou, L., Holt, A. C., Medzhitov, R. and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732–738.

    PubMed  CAS  Google Scholar 

  147. Heidel, J. D., Hu, S., Liu, X. F., Triche, T. J. and Davis, M. E. (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol, 22, 1579–1582.

    PubMed  CAS  Google Scholar 

  148. Morrissey, D. V., Lockridge, J. A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V. et al. (2005) Potent and persistent in vivo anti-HBV activity of chemically ­modified siRNAs. Nat Biotechnol, 23, 1002–1007.

    PubMed  CAS  Google Scholar 

  149. Kariko, K., Buckstein, M., Ni, H. and Weissman, D. (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23, 165–175.

    PubMed  CAS  Google Scholar 

  150. Cekaite, L., Furset, G., Hovig, E. and Sioud, M. (2007) Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. Journal of Molecular Biology, 365, 90–108.

    PubMed  CAS  Google Scholar 

  151. Judge, A. D., Bola, G., Lee, A. C. and MacLachlan, I. (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther, 13, 494–505.

    PubMed  CAS  Google Scholar 

  152. Hamm, S., Latz, E., Hangel, D., Muller, T., Yu, P., Golenbock, D., Sparwasser, T., Wagner, H. and Bauer, S. (2010) Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology, 215, 559–569.

    PubMed  CAS  Google Scholar 

  153. Robbins, M., Judge, A., Liang, L., McClintock, K., Yaworski, E. and MacLachlan, I. (2007) 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther, 15, 1663–1669.

    PubMed  CAS  Google Scholar 

  154. Zamanian-Daryoush, M., Marques, J. T., Gantier, M. P., Behlke, M. A., John, M., Rayman, P., Finke, J. and Williams, B. R. (2008) Determinants of cytokine induction by small interfering RNA in human peripheral blood mononuclear cells. J Interferon Cytokine Res, 28, 221–233.

    PubMed  CAS  Google Scholar 

  155. Collingwood, M. A., Rose, S. D., Huang, L., Hillier, C., Amarzguioui, M., Wiiger, M. T., Soifer, H. S., Rossi, J. J. and Behlke, M. A. (2008) Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides, 18, 187–200.

    PubMed  CAS  Google Scholar 

  156. Du, Q., Thonberg, H., Wang, J., Wahlestedt, C. and Liang, Z. (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res, 33, 1671–1677.

    PubMed  CAS  Google Scholar 

  157. Dahlgren, C., Zhang, H. Y., Du, Q., Grahn, M., Norstedt, G., Wahlestedt, C. and Liang, Z. (2008) Analysis of siRNA specificity on targets with double-nucleotide mismatches. Nucleic Acids Res, 36, e53.

    PubMed  Google Scholar 

  158. Birmingham, A., Anderson, E. M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J. et al. (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods, 3, 199–204.

    PubMed  CAS  Google Scholar 

  159. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S. and Johnson, J. M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773.

    PubMed  CAS  Google Scholar 

  160. Fedorov, Y., Anderson, E. M., Birmingham, A., Reynolds, A., Karpilow, J., Robinson, K., Leake, D., Marshall, W. S. and Khvorova, A. (2006) Off-target effects by siRNA can induce toxic phenotype. RNA, 12, 1188–1196.

    PubMed  CAS  Google Scholar 

  161. Doench, J. G., Petersen, C. P. and Sharp, P. A. (2003) siRNAs can function as miRNAs. Genes Dev, 17, 438–442.

    PubMed  CAS  Google Scholar 

  162. Lin, X., Ruan, X., Anderson, M. G., McDowell, J. A., Kroeger, P. E., Fesik, S. W. and Shen, Y. (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res, 33, 4527–4535.

    PubMed  CAS  Google Scholar 

  163. Doench, J. G. and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev, 18, 504–511.

    PubMed  CAS  Google Scholar 

  164. Williams, A. E. (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci, 65, 545–562.

    PubMed  CAS  Google Scholar 

  165. Wu, L., Fan, J. and Belasco, J. G. (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A, 103, 4034–4039.

    PubMed  CAS  Google Scholar 

  166. Clark, P. R., Pober, J. S. and Kluger, M. S. (2008) Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA: dissection of an off-target effect. Nucleic Acids Res, 36, 1081–1097.

    PubMed  CAS  Google Scholar 

  167. Chen, P. Y., Weinmann, L., Gaidatzis, D., Pei, Y., Zavolan, M., Tuschl, T. and Meister, G. (2008) Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA, 14, 263–274.

    PubMed  CAS  Google Scholar 

  168. Nykanen, A., Haley, B. and Zamore, P. D. (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321.

    PubMed  CAS  Google Scholar 

  169. Stewart, S. A., Dykxhoorn, D. M., Palliser, D., Mizuno, H., Yu, E. Y., An, D. S., Sabatini, D. M., Chen, I. S., Hahn, W. C., Sharp, P. A. et al. (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 9, 493–501.

    PubMed  CAS  Google Scholar 

  170. Laktionov, P. P., Dazard, J. E., Vives, E., Rykova, E. Y., Piette, J., Vlassov, V. V. and Lebleu, B. (1999) Characterisation of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes. Nucleic Acids Res, 27, 2315–2324.

    PubMed  CAS  Google Scholar 

  171. de Diesbach, P., Berens, C., N’Kuli, F., Monsigny, M., Sonveaux, E., Wattiez, R. and Courtoy, P. J. (2000) Identification, purification and partial characterisation of an oligonucleotide receptor in membranes of HepG2 cells. Nucleic Acids Res, 28, 868–874.

    PubMed  Google Scholar 

  172. Lingor, P., Michel, U., Scholl, U., Bahr, M. and Kugler, S. (2004) Transfection of “naked” siRNA results in endosomal uptake and metabolic impairment in cultured neurons. Biochem Biophys Res Commun, 315, 1126–1133.

    PubMed  CAS  Google Scholar 

  173. Overhoff, M., Wunsche, W. and Sczakiel, G. (2004) Quantitative detection of siRNA and single-stranded oligonucleotides: relationship between uptake and biological activity of siRNA. Nucleic Acids Res, 32, e170.

    PubMed  Google Scholar 

  174. Davidson, T. J., Harel, S., Arboleda, V. A., Prunell, G. F., Shelanski, M. L., Greene, L. A. and Troy, C. M. (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci, 24, 10040–10046.

    PubMed  CAS  Google Scholar 

  175. Muratovska, A. and Eccles, M. R. (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett, 558, 63–68.

    PubMed  CAS  Google Scholar 

  176. Moschos, S. A., Jones, S. W., Perry, M. M., Williams, A. E., Erjefalt, J. S., Turner, J. J., Barnes, P. J., Sproat, B. S., Gait, M. J. and Lindsay, M. A. (2007) Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem, 18, 1450–1459.

    PubMed  CAS  Google Scholar 

  177. Kim, W. J., Christensen, L. V., Jo, S., Yockman, J. W., Jeong, J. H., Kim, Y. H. and Kim, S. W. (2006) Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther, 14, 343–350.

    PubMed  Google Scholar 

  178. Chiu, Y. L., Ali, A., Chu, C. Y., Cao, H. and Rana, T. M. (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol, 11, 1165–1175.

    PubMed  CAS  Google Scholar 

  179. Abes, S., Moulton, H., Turner, J., Clair, P., Richard, J. P., Iversen, P., Gait, M. J. and Lebleu, B. (2007) Peptide-based delivery of nucleic acids: design, mechanism of uptake and applications to splice-correcting oligonucleotides. Biochem Soc Trans, 35, 53–55.

    PubMed  CAS  Google Scholar 

  180. Bolcato-Bellemin, A. L., Bonnet, M. E., Creusat, G., Erbacher, P. and Behr, J. P. (2007) Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci U S A, 104, 16050–16055.

    PubMed  CAS  Google Scholar 

  181. Lee, S. Y., Huh, M. S., Lee, S., Lee, S. J., Chung, H., Park, J. H., Oh, Y. K., Choi, K., Kim, K. and Kwon, I. C. (2009) Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release, 141, 339–346.

    PubMed  Google Scholar 

  182. Ikeda, Y. and Taira, K. (2006) Ligand-targeted delivery of therapeutic siRNA. Pharm Res, 23, 1631–1640.

    PubMed  CAS  Google Scholar 

  183. Oishi, M., Nagasaki, Y., Nishiyama, N., Itaka, K., Takagi, M., Shimamoto, A., Furuichi, Y. and Kataoka, K. (2007) Enhanced growth inhibition of hepatic multicellular tumor spheroids by lactosylated poly(ethylene glycol)-siRNA conjugate formulated in PEGylated polyplexes. ChemMedChem, 2, 1290–1297.

    PubMed  CAS  Google Scholar 

  184. Medarova, Z., Pham, W., Farrar, C., Petkova, V. and Moore, A. (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med, 13, 372–377.

    PubMed  CAS  Google Scholar 

  185. Derfus, A. M., Chen, A. A., Min, D. H., Ruoslahti, E. and Bhatia, S. N. (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem, 18, 1391–1396.

    PubMed  CAS  Google Scholar 

  186. Cesarone, G., Edupuganti, O. P., Chen, C. P. and Wickstrom, E. (2007) Insulin receptor substrate 1 knockdown in human MCF7 ER+ breast cancer cells by nuclease-resistant IRS1 siRNA conjugated to a disulfide-bridged D-peptide analogue of insulin-like growth factor 1. Bioconjug Chem, 18, 1831–1840.

    PubMed  CAS  Google Scholar 

  187. Xia, C. F., Zhang, Y., Boado, R. J. and Pardridge, W. M. (2007) Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res, 24, 2309–2316.

    PubMed  CAS  Google Scholar 

  188. Oishi, M., Nagasaki, Y., Itaka, K., Nishiyama, N. and Kataoka, K. (2005) Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc, 127, 1624–1625.

    PubMed  CAS  Google Scholar 

  189. Chu, T. C., Twu, K. Y., Ellington, A. D. and Levy, M. (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res, 34, e73.

    PubMed  Google Scholar 

  190. McNamara, J. O., II, Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A. and Giangrande, P. H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24, 1005–1015.

    PubMed  CAS  Google Scholar 

  191. McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J. and Kay, M. A. (2002) RNA interference in adult mice. Nature, 418, 38–39.

    PubMed  CAS  Google Scholar 

  192. Bartlett, D. W. and Davis, M. E. (2008) Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng, 99, 975–985.

    PubMed  CAS  Google Scholar 

  193. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F. and Aigner, A. (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther, 12, 461–466.

    PubMed  CAS  Google Scholar 

  194. Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P. Y., Scaria, P. V. and Woodle, M. C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res, 32, e149.

    PubMed  Google Scholar 

  195. Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, Y., Palliser, D., Weiner, D. B., Shankar, P. et al. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 23, 709–717.

    PubMed  CAS  Google Scholar 

  196. Heidel, J. D., Yu, Z., Liu, J. Y., Rele, S. M., Liang, Y., Zeidan, R. K., Kornbrust, D. J. and Davis, M. E. (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A, 104, 5715–5721.

    PubMed  CAS  Google Scholar 

  197. Kim, S. H., Mok, H., Jeong, J. H., Kim, S. W. and Park, T. G. (2006) Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Bioconjug Chem, 17, 241–244.

    PubMed  Google Scholar 

  198. Bartlett, D. W. and Davis, M. E. (2007) Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol Bioeng, 97, 909–921.

    PubMed  CAS  Google Scholar 

  199. Shen, J., Samul, R., Silva, R. L., Akiyama, H., Liu, H., Saishin, Y., Hackett, S. F., Zinnen, S., Kossen, K., Fosnaugh, K. et al. (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther, 13, 225–234.

    PubMed  CAS  Google Scholar 

  200. Wolfrum, C., Shi, S., Jayaprakash, K. N., Jayaraman, M., Wang, G., Pandey, R. K., Rajeev, K. G., Nakayama, T., Charrise, K., Ndungo, E. M. et al. (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol, 25, 1149–1157.

    PubMed  CAS  Google Scholar 

  201. Bumcrot, D., Manoharan, M., Koteliansky, V. and Sah, D. W. (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol, 2, 711–719.

    PubMed  CAS  Google Scholar 

  202. Corey, D. R. (2007) Chemical modification: the key to clinical application of RNA interference? J Clin Invest, 117, 3615–3622.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper B. Bramsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Bramsen, J.B., Kjems, J. (2011). Chemical Modification of Small Interfering RNA. In: van Rij, R. (eds) Antiviral RNAi. Methods in Molecular Biology, vol 721. Humana Press. https://doi.org/10.1007/978-1-61779-037-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-037-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-036-2

  • Online ISBN: 978-1-61779-037-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics