Skip to main content
Book cover

Polyamines pp 195–205Cite as

Assay of Deoxyhypusine Synthase Activity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 720))

Abstract

Deoxyhypusine synthase catalyzes an unusual protein modification reaction. A portion of spermidine is covalently added to one specific lysine residue of one eukaryotic protein, eIF5A (eukaryotic initiation factor 5A) to form a deoxyhypusine residue. The assay measures the incorporation of radioactivity from [1,8-3H]spermidine into the eIF5A protein. The enzyme is specific for the eIF5A precursor protein and does not work on short peptides (<50 amino acids). Optimum conditions for the reaction and four detection methods for the product, deoxyhypusine-containing eIF5A, are described in this chapter. The first, and most specific, method is the measurement of the amount of [3H]deoxyhypusine in the protein hydrolysate after its separation by ion exchange chromatography. However, this method requires some specialized equipment. The second method is counting the radioactivity in TCA-precipitated protein after thorough washing. The third method involves determining the radioactivity in the band of [3H]deoxyhypusine-containing eIF5A after separation by SDS-PAGE. The fourth method is a filter-binding assay. It is important to minimize nonspecific binding of [3H]spermidine to proteins in the assay mixture, especially for methods 2 and 4, as illustrated in a comparison figure in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139:161–169

    Article  PubMed  CAS  Google Scholar 

  2. Murphey RJ, Gerner EW (1987) Hypusine formation in protein by a two-step process in cell lysates. J Biol Chem 262:15033–15036

    PubMed  CAS  Google Scholar 

  3. Chen KY, Dou QP (1988) NAD+ stimulated the spermidine-dependent hypusine formation on the 18 kDa protein in cytosolic lysates derived from NB-15 mouse neuroblastoma cells. FEBS Lett 229:325–328

    Article  PubMed  CAS  Google Scholar 

  4. Park MH, Wolff EC (1988) Cell-free synthesis of deoxyhypusine. Separation of protein substrate and enzyme and identification of 1, 3-diaminopropane as a product of spermidine cleavage. J Biol Chem 263:15264–15269

    PubMed  CAS  Google Scholar 

  5. Wolff EC, Park MH, Folk JE (1990) Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem 265:4793–4799

    PubMed  CAS  Google Scholar 

  6. Wolff EC, Kang KR, Kim YS, Park MH (2007) Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33:341–350

    Article  PubMed  CAS  Google Scholar 

  7. Jakus J, Wolff EC, Park MH, Folk JE (1993) Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies Effective inhibition by bis- and mono- guanylated diamines and polyamines.J Biol Chem 268:13151–13159

    PubMed  CAS  Google Scholar 

  8. Duncan RF, Hershey JW (1986) Changes in eIF-4D hypusine modification or abundance are not correlated with translational repression in HeLa cells. J Biol Chem 261:12903–12906

    PubMed  CAS  Google Scholar 

  9. Park MH (1987) Regulation of biosynthesis of hypusine in Chinese hamster ovary cells. Evidence for eIF-4D precursor polypeptides. J Biol Chem 262:12730–12734

    PubMed  CAS  Google Scholar 

  10. Byers TL, Wiest L, Wechter RS, Pegg AE (1993) Effects of chronic 5’-([(Z)-4-amino-2-butenyl]methylamino)-5’-deoxy-adenosine (AbeAdo) treatment on polyamine and eIF-5A metabolism in AbeAdo-sensitive and -resistant L1210 murine leukaemia cells. Biochem J 290:115–121

    PubMed  CAS  Google Scholar 

  11. Smit-McBride Z, Dever TE, Hershey JW, Merrick WC (1989) Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein.J Biol Chem 264:1578–1583

    PubMed  CAS  Google Scholar 

  12. Joe YA, Wolff EC, Park MH (1995) Cloning and expression of human deoxyhypusine synthase cDNA Structure- function studies with the recombinant enzyme and mutant proteins. J Biol Chem 270:22386–22392

    Article  PubMed  CAS  Google Scholar 

  13. Smit-McBride Z, Schnier J, Kaufman RJ, Hershey JW (1989) Protein synthesis initiation factor eIF-4D Functional comparison of native and unhypusinated forms of the protein. J Biol Chem 264:18527–18530

    PubMed  CAS  Google Scholar 

  14. Joe YA, Park MH (1994) Structural features of the eIF-5A precursor required for posttranslational synthesis of deoxyhypusine.J Biol Chem 269:25916–25921

    PubMed  CAS  Google Scholar 

  15. Dou QP, Chen KY (1990) Characterization and reconstitution of a cell free system for NAD(+)-dependent deoxyhypusine formation on the 18 kDa eIF-4D precursor. Biochim Biophys Acta 1036:128–137

    Article  PubMed  CAS  Google Scholar 

  16. Lee YB, Joe YA, Wolff EC, Dimitriadis EK, Park MH (1999) Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor. Biochem J 340:273–281

    Article  PubMed  CAS  Google Scholar 

  17. Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL (1980) Polyamines as physiological substrates for transglutaminases. J Biol Chem 255:3695–3700

    PubMed  CAS  Google Scholar 

  18. Park MH, Cooper HL, Folk JE (1983) Chromatographic identification of hypusine [Ne-(4-amino-2-hydroxyl)lysine] and deoxyhypusine [Ne-(4-aminobutyl)lysine). Methods Enzymol 94:458–462

    Article  CAS  Google Scholar 

  19. Byers TL, Ganem B, Pegg AE (1992) Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5’-([(Z)-4-amino-2-butenyl]methylamino)-5’-deoxyadenosine may be due to hypusine depletion. Biochem J 287(Pt 3):717–724

    PubMed  CAS  Google Scholar 

  20. Sasaki K, Abid MR, Miyazaki M (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett 384:151–154

    Article  PubMed  CAS  Google Scholar 

  21. Byers TL, Lakanen JR, Coward JK, Pegg AE (1994) The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence ­provided by 1-methylspermidine and 1, 12-dimethylspermine. Biochem J 303(Pt 2):363–368

    PubMed  CAS  Google Scholar 

  22. Wolff EC, Lee YB, Chung SI, Folk JE, Park MH (1995) Deoxyhypusine synthase from rat testis: purification and characterization. J Biol Chem 270:8660–8666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Intramural Research Program of the NIDCR, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wolff, E.C., Lee, S.B., Park, M.H. (2011). Assay of Deoxyhypusine Synthase Activity. In: Pegg, A., Casero, Jr., R. (eds) Polyamines. Methods in Molecular Biology, vol 720. Humana Press. https://doi.org/10.1007/978-1-61779-034-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-034-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-033-1

  • Online ISBN: 978-1-61779-034-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics