Skip to main content

Bioinformatics for Mass Spectrometry-Based Metabolomics

  • Protocol
  • First Online:
Bioinformatics for Omics Data

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

The broad view of the state of biological systems cannot be complete without the added value of integrating proteomic and genomic data with metabolite measurement. By definition, metabolomics aims at quantifying not less than the totality of small molecules present in a biofluid, tissue, organism, or any material beyond living systems. To cope with the complexity of the task, mass spectrometry (MS) is the most promising analytical environment to fulfill increasing appetite for more accurate and larger view of the metabolome while providing sufficient data generation throughput. Bioinformatics and associated disciplines naturally play a central role in bridging the gap between fast evolving technology and domain experts. Here, we describe the strategies to translate crude MS information into features characteristics of metabolites, and resources available to guide scientists along the metabolomics pipeline. A particular emphasis is put on pragmatic solutions to interpret the outcome of metabolomics experiments at the level of signal processing, statistical treatment, and biochemical understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberger, K. M., and Graber, A. (2005) Using comprehensive metabolomics to identify novel biomarkers. Screen Trends Drug Discov 6, 42–5.

    Google Scholar 

  2. Weinberger, K. M. (2008) Metabolomics in diagnosing metabolic diseases. Ther Umsch 65, 487–91.

    Article  PubMed  Google Scholar 

  3. Weinberger, K. M., Ramsay, S. L., and Graber, A. (2005) Towards the biochemical fingerprint. Biosyst Solut 12, 36–7.

    Google Scholar 

  4. Beckmann, M., Parker, D., Enot, D. P., Duval, E., and Draper, J. (2008) High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat Protoc 3, 486–504.

    Article  PubMed  CAS  Google Scholar 

  5. Shin, H., and Markey, M. K. (2006) A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. Biomed Inform 39, 227–48.

    Article  CAS  Google Scholar 

  6. Listgarten, J., and Emili, A. (2005) Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4, 419–34.

    Article  PubMed  CAS  Google Scholar 

  7. Enot, D. P., Lin, W., Beckmann, M., Parker, D., Overy, D. P., and Draper, J. (2008) Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nat Protoc 3, 446–70.

    Article  PubMed  CAS  Google Scholar 

  8. Karpievitch, Y. V., Hill, E. G., Smolka, A. J., Morris, J. S., Coombes, K. R., Baggerly, K. A., and Almeida, J. S. (2007) PrepMS: TOF MS data graphical preprocessing tool. Bioinformatics 23, 264–5.

    Article  PubMed  CAS  Google Scholar 

  9. Haimi, P., Uphoff, A., Hermansson, M., and Somerharju, P. (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78, 8324–31.

    Article  PubMed  CAS  Google Scholar 

  10. Bylund, D. (2001) Chemometric tools for enhanced performance in liquid chromatography-mass spectrometry, Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, ISSN 1104-232X; 607.

    Google Scholar 

  11. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T. A., Hill, L. R., et al. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75, 4818–26.

    Article  PubMed  CAS  Google Scholar 

  12. Jonsson, P., Johansson, A. I., Gullberg, J., Trygg, J., Grung, B., Marklund, S., et al. (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77, 5635–42.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu, W., Wang, X., Ma, Y., Rao, M., Glimm, J., and Kovach, J. S. (2003) Detection of ­cancer-specific markers amid massive mass spectral data. Proc Natl Acad Sci USA 100, 14666–71.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, Q., Stoyanova, R., Du, S., Sajda, P., and Brown, T. R. (2006) HiRes – a tool for comprehensive assessment and interpretation of metabolomic data. Bioinformatics 22, 2562–4.

    Article  PubMed  CAS  Google Scholar 

  15. Fredriksson, M. J., Petersson, P., Axelsson, B. O., and Bylund, D. J. (2009) An automatic peak finding method for LC-MS data using Gaussian second derivative filtering. Sep Sci 32, 3906–18.

    Article  CAS  Google Scholar 

  16. Katajamaa, M., and Oresic, M. (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158, 318–28.

    Article  PubMed  CAS  Google Scholar 

  17. Tan, C. S., Ploner, A., Quandt, A., Lehtiö, J., and Pawitan, Y. (2006) Finding regions of significance in SELDI measurements for identifying protein biomarkers. Bioinformatics 22, 1515–23.

    Article  PubMed  CAS  Google Scholar 

  18. Vivó-Truyols, G., Torres-Lapasió, J. R., van Nederkassel, A. M., Vander Heyden, Y., and Massart, D. L. (2005) Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals part I: peak detection. J Chromatogr A 1096, 133–45.

    Article  PubMed  Google Scholar 

  19. Fredriksson, M., Petersson, P., Jörnten-Karlsson, M., Axelsson, B. O., and Bylund, D. (2007) An objective comparison of pre-­processing methods for enhancement of ­liquid chromatography-mass spectrometry data. J Chromatogr A 1172, 135–50.

    Article  PubMed  CAS  Google Scholar 

  20. Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A., and Kobayashi, R. (2005) Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21, 1764–75.

    Article  PubMed  CAS  Google Scholar 

  21. Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q. T. (2004) Sample classification from protein mass spectrometry by peak probability contrasts. Bioinformatics 20, 3034–44.

    Article  PubMed  CAS  Google Scholar 

  22. Lange, E., Tautenhahn, R., Neumann, S., and Gropl, C. (2008) Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics 9, 375.

    Article  PubMed  Google Scholar 

  23. Nordstrom, A., O’Maille, G., Qin, C., and Siuzdak, G. (2006) Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal Chem 78, 3289–95.

    Article  PubMed  Google Scholar 

  24. Sadygov, R. G., Maroto, F. M., and Huhmer, A. F. (2006) ChromAlign: a two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. Anal Chem 78, 8207–17.

    Article  PubMed  CAS  Google Scholar 

  25. Peters, S., van Velzen, E., and Janssen, H. G. (2009) Parameter selection for peak alignment in chromatographic sample profiling: objective quality indicators and use of control samples. Anal Bioanal Chem 394, 1273–81.

    Article  PubMed  CAS  Google Scholar 

  26. Eibl, G., Bernardo, K., Koal, T., Ramsay, S. L., Weinberger, K. M., and Graber, A. (2008) Isotope correction of mass spectrometry profiles. Rapid Commun Mass Spectrom 22, 2248–52.

    Article  PubMed  CAS  Google Scholar 

  27. Kind, T., Scholz, M., and Fiehn, O. (2009) How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLoS ONE 4, e5440.

    Article  PubMed  Google Scholar 

  28. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G., and Kell, D. B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22, 245–52.

    Article  PubMed  CAS  Google Scholar 

  29. Torgrip, R. J. O., Aberg, K. M., Alm, E., Schuppe-Koistinen, I., and Lindberg, J. (2008) A note on normalization of biofluid 1D 1H-NMR data. Metabolomics 4, 114–21.

    Article  CAS  Google Scholar 

  30. Dieterle, F., Ross, A., Schlotterbeck, G., and Senn, H. (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78, 4281–90.

    Article  PubMed  CAS  Google Scholar 

  31. Warrack, B. M., Hnatyshyn, S., Ott, K. H., Reily, M. D., Sanders, M., Zhang, H., and Drexler, D. M. (2009) Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 877, 547–52.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, P., Tang, H., Zhang, H., Whiteaker, J., Paulovich, A. G., and Mcintosh, M. (2006) Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pac Symp Biocomput 11, 315–26.

    Article  Google Scholar 

  33. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf

  34. Sysi-Aho, M., Katajamaa, M., Yetukuri, L., and Oresic, M. (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics 8, 93.

    Article  PubMed  Google Scholar 

  35. Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78, 567–74.

    Article  PubMed  CAS  Google Scholar 

  36. Hermansson, M., Uphoff, A., Käkelä, R., and Somerharju, P. (2005) Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal Chem 77, 2166–75.

    Article  PubMed  CAS  Google Scholar 

  37. Unterwurzacher, I., Koal, T., Bonn, G. K., Weinberger, K. M., and Ramsay, S. L. (2008) Rapid sample preparation and simultaneous quantitation of prostaglandins and lipoxygenase derived fatty acid metabolites by liquid chromatography-mass spectrometry from small sample volumes. Clin Chem Lab Med 46, 1589–97.

    Article  PubMed  CAS  Google Scholar 

  38. Go, E. P. J. (2009) Database resources in metabolomics: an overview. Neuroimmune Pharmacol 5, 18–30.

    Article  Google Scholar 

  39. http://www.mibbi.org

  40. Taylor, C. F., Field, D., Sansone, S. A., Aerts, J., Apweiler, R., Ashburner, M., et al. (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26, 889–96.

    Article  PubMed  CAS  Google Scholar 

  41. http://msi-workgroups.sourceforge.net

  42. MSI Board Members, Sansone, S. A., Fan, T., Goodacre, R., Griffin, J. L., Hardy, N. W., et al. (2007) The metabolomics standards initiative. Nat Biotechnol 25, 846–8.

    Article  PubMed  CAS  Google Scholar 

  43. Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A. R., Taylor, J., et al. (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22, 1601–6.

    Article  PubMed  CAS  Google Scholar 

  44. http://dbkgroup.org/memo

  45. Spasić, I., Dunn, W. B., Velarde, G., Tseng, A., Jenkins, H., Hardy, N. W., et al. (2006) MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics. BMC Bioinformatics 7, 281.

    Article  PubMed  Google Scholar 

  46. http://www.proteomecommons.org

  47. Broadhurst, D. I., and Kell, D. B. (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–96.

    Article  CAS  Google Scholar 

  48. Brown, M., Dunn, W. B., Ellis, D. I., Goodacre, R., Handl, J., Knowles, J. D., et al. (2005) A metabolome pipeline: from concept to data to knowledge. Metabolomics 1, 39–59.

    Article  CAS  Google Scholar 

  49. Parsons, H. M., Ekman, D. R., Collette, T. W., and Viant, M. R. (2009) Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst 134, 478–85.

    Article  PubMed  CAS  Google Scholar 

  50. Crews, B., Wikoff, W. R., Patti, G. J., Woo, H. K., Kalisiak, E., Heideker, J., and Siuzdak, G. (2009) Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem 81, 8538–44.

    Article  PubMed  CAS  Google Scholar 

  51. van Belle, G., and Martin, D. C. (1993) Sample size as a function of coefficient of variation and ratio of means. Am Stat 47, 165–7.

    Article  Google Scholar 

  52. Werner, E., Croixmarie, V., Umbdenstock, T., Ezan, E., Chaminade, P., Tabet, J. C., and Junot, C. (2008) Mass spectrometry-based metabolomics: accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Anal Chem 80, 4918–32.

    Article  PubMed  CAS  Google Scholar 

  53. Draper, J., Enot, D. P., Parker, D., Beckmann, M., Snowdon, S., Lin, W., and Zubair, H. (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics 10, 227.

    Article  PubMed  Google Scholar 

  54. Steuer, R. (2006) Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform 7, 151–8.

    Article  PubMed  CAS  Google Scholar 

  55. Mendes, P., Camacho, D., and de la Fuente, A. (2005) Modelling and simulation for metabolomics data analysis. Biochem Soc Trans 33, 1427–9.

    Article  PubMed  CAS  Google Scholar 

  56. Camacho, D., de la Fuente, A., and Mendes, P. (2005) The origin of correlations in metabolomics data. Metabolomics 1, 53–63.

    Article  CAS  Google Scholar 

  57. Lu, C., and King, R. D. (2009) An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems. Bioinformatics 25, 2020–7.

    Article  PubMed  CAS  Google Scholar 

  58. Purohit, P. V., Rocke, D. M., Viant, M. R., and Woodruff, D. L. (2004) Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS 8,118–30.

    Article  PubMed  CAS  Google Scholar 

  59. Jain, R. B., Caudill, S. P., Wang, R. Y., and Monsell, E. (2008) Evaluation of maximum likelihood procedures to estimate left censored observations. Anal Chem 80, 1124–32.

    Article  PubMed  CAS  Google Scholar 

  60. Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J. (2007) pcaMethods – a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–7.

    Article  PubMed  CAS  Google Scholar 

  61. http://www.genome.jp/keg

  62. http://www.reactome.org

  63. http://biocyc.org

  64. http://www.hmdb.ca

  65. http://www.ncbi.nlm.nih.gov/omim

  66. Modre-Osprian, R., Osprian, I., Tilg, B., Schreier, G., Weinberger, K. M., and Graber, A. (2009) Dynamic simulations on the mitochondrial fatty acid beta-oxidation network. BMC Syst Biol 3, 2.

    Article  PubMed  Google Scholar 

  67. http://www.broadinstitute.org/gsea

  68. http://www.geneontology.org

  69. Wang-Sattler, R., Yu, Y., Mittelstrass, K., Lattka, E., Altmaier, E., Gieger, C., et al. (2008) Metabolic profiling reveals distinct variations linked to nicotine consumption in humans – first results from the KORA study. PLoS ONE 3, e3863.

    Article  PubMed  Google Scholar 

  70. Gieger, C., Geistlinger, L., Altmaier, E., Hrabe de Angelis, M., Kronenberg, F., Meitinger, T., et al. (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4, e1000282.

    Article  PubMed  Google Scholar 

  71. Altmaier, E., Ramsay, S. L., Graber, A., Mewes, H. W., Weinberger, K. M., and Suhre, K. (2008) Bioinformatics analysis of targeted metabolomics – uncovering old and new tales of diabetic mice under medication. Endocrinology 149, 3478–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus M. Weinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Enot, D.P., Haas, B., Weinberger, K.M. (2011). Bioinformatics for Mass Spectrometry-Based Metabolomics. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics