Skip to main content

Bioinformatics for RNomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

Rapid improvements in high-throughput experimental technologies make it nowadays possible to study the expression, as well as changes in expression, of whole transcriptomes under different environmental conditions in a detailed view. We describe current approaches to identify genome-wide functional RNA transcripts (experimentally as well as computationally), and focus on computational methods that may be utilized to disclose their function. While genome databases offer a wealth of information about known and putative functions for protein-coding genes, functional information for novel non-coding RNA genes is almost nonexistent. This is mainly explained by the lack of established software tools to efficiently reveal the function and evolutionary origin of non-coding RNA genes. Here, we describe in detail computational approaches one may follow to annotate and classify an RNA transcript.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. The ENCODE Project Consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.

    Article  CAS  Google Scholar 

  2. The ENCODE Project Consortium. (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–40

    Article  CAS  Google Scholar 

  3. Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engström PG, et al. (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2, e62.

    Article  PubMed  CAS  Google Scholar 

  4. Kapranov P, Willingham AT, and Gingeras TR. (2007) Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8, 413–23.

    Article  PubMed  CAS  Google Scholar 

  5. Mattick JS. (2004) The hidden genetic program of complex organisms. Sci Am 291, 60–7.

    Article  PubMed  Google Scholar 

  6. Mattick JS, and Makunin IV. (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1), R17–29.

    Article  PubMed  CAS  Google Scholar 

  7. Prasanth KV, and Spector DL. (2007) Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev 21, 11–42.

    Article  PubMed  CAS  Google Scholar 

  8. Bartel DP. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–97.

    Article  PubMed  CAS  Google Scholar 

  9. Wightman B, Ha I, and Ruvkun G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–62.

    Article  PubMed  CAS  Google Scholar 

  10. Lee RC, Feinbaum RL, and Ambros V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–54.

    Article  PubMed  CAS  Google Scholar 

  11. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kato M, and Slack FJ. (2008) MicroRNAs: small molecules with big roles – C. elegans to human cancer. Biol Cell 100, 71–81.

    Article  PubMed  CAS  Google Scholar 

  13. Seto AG, Kingston RE, and Lau NC. (2007) The coming of age for Piwi proteins. Mol Cell 26, 603–9.

    Article  PubMed  CAS  Google Scholar 

  14. Senner CE, and Brockdorff N. (2009) Xist gene regulation at the onset of X inactivation. Curr Opin Genet Dev 19, 122–6.

    Article  PubMed  CAS  Google Scholar 

  15. Martianov I, Ramadass A, Barros AS, Chow N, and Akoulitchev A. (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–70.

    Article  PubMed  CAS  Google Scholar 

  16. Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, et al. (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22, 756–69.

    Article  PubMed  CAS  Google Scholar 

  17. Mercer TR, Dinger ME, and Mattick JS. (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10, 155–9.

    Article  PubMed  CAS  Google Scholar 

  18. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, and Sampath R. (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29, 4724–35.

    Article  PubMed  CAS  Google Scholar 

  19. Tinoco I, and Bustamante C. (1999) How RNA folds. J Mol Biol 293, 271–81.

    Article  PubMed  CAS  Google Scholar 

  20. Le SV, Chen JH, Currey KM, and Maizel JV. (1998) A program for predicting significant RNA secondary structures. Comput Appl Biosci 4, 153–9.

    Google Scholar 

  21. Rivas E, and Eddy SR. (2000) Secondary structure alone is generally not statistically significant for the detection of non-coding RNAs. Bioinformatics 16, 583–605.

    Article  PubMed  CAS  Google Scholar 

  22. Rivas E, and Eddy SR. (2001) Non-coding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2, 8.

    Article  PubMed  CAS  Google Scholar 

  23. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, et al. (2006) Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol 2, e33.

    Article  PubMed  CAS  Google Scholar 

  24. Washietl S, Hofacker IL, and Stadler PF. (2005) Fast and reliable prediction of non-coding RNAs. Proc Natl Acad Sci USA 102, 2454–9.

    Article  PubMed  CAS  Google Scholar 

  25. Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, and Stadler PF. (2005) Mapping of conserved RNA secondary structures predicts thousands of functional non-coding RNAs in the human genome. Nat Biotechnol 23, 1383–90.

    Article  PubMed  CAS  Google Scholar 

  26. Missal K, Rose D, and Stadler PF. (2005) Non-coding RNAs in Ciona intestinalis. Bioinformatics 21 Suppl 2, ii77–8.

    Article  PubMed  CAS  Google Scholar 

  27. Missal K, Zhu X, Rose D, Deng W, Skogerbø G, Chen R, et al. (2006) Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Exp Zool B Mol Dev Evol 306, 379–92.

    Article  PubMed  CAS  Google Scholar 

  28. Rose D, Hackermüller J, Washietl S, Reiche K, Hertel J, Findeiss S, et al. (2007) Computational RNomics of drosophilids. BMC Genomics 8, 406.

    Article  PubMed  Google Scholar 

  29. Steigele S, Huber W, Stocsits C, Stadler PF, and Nieselt K. (2007) Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions. BMC Biol 5, 25.

    Article  PubMed  CAS  Google Scholar 

  30. Mourier T, Carret C, Kyes S, Christodoulou Z, Gardner PP, Jeffares DC, et al. (2008) Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum. Genome Res 18, 281–92.

    Article  PubMed  CAS  Google Scholar 

  31. Rose D, Jöris J, Hackermüller J, Reiche K, Li Q, and Stadler PF. (2008) Duplicated RNA genes in teleost fish genomes. J Bioinform Comput Biol 6, 1157–75.

    Article  PubMed  CAS  Google Scholar 

  32. Gesell T, and Washietl S. (2008) Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics 9, 248.

    Article  PubMed  CAS  Google Scholar 

  33. Gruber A, Findeiss S, Washietl S, Hofacker I, and Stadler P. (2010) RNAz 2.0: improved non-coding RNA detection. Pac Symp Biocomput 15, 69–79.

    PubMed  Google Scholar 

  34. Gruber AR, Neuböck R, Hofacker IL, and Washietl S. (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures Nucleic Acids Res 35, W335–8.

    Article  PubMed  Google Scholar 

  35. Washietl S. (2007) Prediction of structural non-coding RNAs with RNAz. Methods Mol Biol 395, 503–26.

    Article  PubMed  CAS  Google Scholar 

  36. Washietl S, and Hofacker IL. (2007) Identifying structural non-coding RNAs using RNAz. Curr Protoc Bioinformatics 12, Unit 12.7.

    Google Scholar 

  37. Rose D, Hertel J, Reiche K, Stadler PF, and Hackermüller J. (2008) NcDNAlign: plausible multiple alignments of non-protein-coding genomic sequences. Genomics 92, 65–74.

    Article  PubMed  CAS  Google Scholar 

  38. Sankoff D. (1985) Simultaneous solution of the RNA folding, alignment, and proto-sequence problems. SIAM J Appl Math 45, 810–25.

    Article  Google Scholar 

  39. Uzilov AV, Keegan JM, and Mathews DH. (2006) Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 7, 173.

    Article  PubMed  CAS  Google Scholar 

  40. Mathews DH, and Turner DH. (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317, 191–203.

    Article  PubMed  CAS  Google Scholar 

  41. Torarinsson E, Sawera M, Havgaard JH, Fredholm M, and Gorodkin J. (2006) Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res 16, 885–9.

    Article  PubMed  CAS  Google Scholar 

  42. Gorodkin J, Heyer LJ, and Stormo GD. (1997) Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res 25, 3724–32.

    Article  PubMed  CAS  Google Scholar 

  43. Washietl S, Pedersen JS, Korbel JO, Stocsits C, Gruber AR, Hackermüller J, et al. (2007) Structured RNAs in the ENCODE selected regions of the human genome. Genome Res 17, 852–64.

    Article  PubMed  CAS  Google Scholar 

  44. Hiller M, Findeiss S, Lein S, Marz M, Nickel C, Rose D, et al. (2009) Conserved introns reveal novel transcripts in Drosophila melanogaster. Genome Res 19, 1289–300.

    Article  PubMed  CAS  Google Scholar 

  45. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, et al. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–9.

    Article  PubMed  CAS  Google Scholar 

  46. Schadt EE, Edwards SW, GuhaThakurta D, Holder D, Ying L, Svetnik V, et al. (2004) A comprehensive transcript index of the human genome generated using microarrays and computational approaches. Genome Biol 5, R73.

    Article  PubMed  Google Scholar 

  47. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, et al. (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–6.

    Article  PubMed  CAS  Google Scholar 

  48. Stolc V, Samanta MP, Tongprasit W, Sethi H, Liang S, Nelson DC, et al. (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci USA 102, 4453–8.

    Article  PubMed  CAS  Google Scholar 

  49. Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, et al. (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14, 331–42.

    Article  PubMed  CAS  Google Scholar 

  50. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–8.

    Article  PubMed  CAS  Google Scholar 

  51. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, et al. (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38, 1375–7.

    Article  PubMed  CAS  Google Scholar 

  52. Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, et al. (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409, 685–90.

    Article  PubMed  Google Scholar 

  53. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–73.

    Article  PubMed  Google Scholar 

  54. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. (2005) The transcriptional landscape of the mammalian genome. Science 309, 1559–63.

    Article  PubMed  CAS  Google Scholar 

  55. The FANTOM Consortium, Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, et al. (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41, 553–62.

    Article  PubMed  CAS  Google Scholar 

  56. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–7.

    Article  PubMed  CAS  Google Scholar 

  57. Athanasius F Bompfünewerer Consortium, Backofen R, Bernhart SH, Flamm C, Fried C, Fritzsch G, et al. (2007) RNAs everywhere: genome-wide annotation of structured RNAs. J Exp Zool B Mol Dev Evol 308, 1–25.

    PubMed  Google Scholar 

  58. Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. (1990) Basic local alignment search tool. J Mol Biol 215, 403–10.

    PubMed  CAS  Google Scholar 

  59. Smith TF, and Waterman MS. (1981) Identification of common molecular subsequences. J Mol Biol 147, 195–7.

    Article  PubMed  CAS  Google Scholar 

  60. Roshan U, and Livesay DR. (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22, 2715–21.

    Article  PubMed  CAS  Google Scholar 

  61. Roshan U, Chikkagoudar S, and Livesay DR. (2008) Searching for evolutionary distant RNA homologs within genomic sequences using partition function posterior probabilities. BMC Bioinformatics 9, 61.

    Article  PubMed  CAS  Google Scholar 

  62. Hertel J, de Jong D, Marz M, Rose D, Tafer H, Tanzer A, et al. (2009) Non-coding RNA annotation of the genome of Trichoplax adhaerens. Nucleic Acids Res 37, 1602–15.

    Article  PubMed  CAS  Google Scholar 

  63. Mosig A, Sameith K, and Stadler P. (2006) Fragrep: an efficient search tool for fragmented patterns in genomic sequences. Genom Proteom Bioinf 4, 56–60.

    Article  CAS  Google Scholar 

  64. Gardner PP, Wilm A, and Washietl S. (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33, 2433–9.

    Article  PubMed  CAS  Google Scholar 

  65. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31, 3497–500.

    Article  PubMed  CAS  Google Scholar 

  66. Markham NR, and Zuker M. (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453, 3–31.

    Article  PubMed  CAS  Google Scholar 

  67. Hofacker IL. (2007) RNA consensus structure prediction with RNAalifold. Methods Mol Biol 395, 527–44.

    Article  PubMed  CAS  Google Scholar 

  68. Hofacker IL. (2009) RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinf 12, Unit12.2.

    Google Scholar 

  69. Torarinsson E, Havgaard JH, and Gorodkin J. (2007) Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23, 926–32.

    Article  PubMed  CAS  Google Scholar 

  70. McCaskill JS. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–19.

    Article  PubMed  CAS  Google Scholar 

  71. Hofacker IL, Bernhart SHF, and Stadler PF. (2004) Alignment of RNA base pairing probability matrices. Bioinformatics 20, 2222–7.

    Article  PubMed  CAS  Google Scholar 

  72. Will S, Reiche K, Hofacker IL, Stadler PF, and Backofen R. (2007) Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3, e65.

    Article  PubMed  CAS  Google Scholar 

  73. Knudsen B, and Hein J. (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15, 446–54.

    Article  PubMed  CAS  Google Scholar 

  74. Knudsen B, and Hein J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31, 3423–8.

    Article  PubMed  CAS  Google Scholar 

  75. Seemann SE, Gorodkin J, and Backofen R. (2008) Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 36, 6355–62.

    Article  PubMed  CAS  Google Scholar 

  76. Dowell RD, and Eddy SR. (2006) Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7, 400.

    Article  PubMed  CAS  Google Scholar 

  77. Meyer IM, and Miklós I. (2007) SimulFold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework. PLoS Comput Biol 3, e149.

    Article  PubMed  CAS  Google Scholar 

  78. Lowe TM, and Eddy SR. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–64.

    Article  PubMed  CAS  Google Scholar 

  79. Hertel J, and Stadler PF. (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22, e197–202.

    Article  PubMed  CAS  Google Scholar 

  80. Hertel J, Hofacker IL, and Stadler PF. (2008) SnoReport: computational identification of snoR NAs with unknown targets. Bioinformatics 24, 158–64.

    Article  PubMed  CAS  Google Scholar 

  81. Lowe TM, and Eddy SR. (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–71.

    Article  PubMed  CAS  Google Scholar 

  82. Schattner P, Decatur WA, Davis CA, Ares M, Fournier MJ, and Lowe TM. (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 32, 4281–96.

    Article  PubMed  CAS  Google Scholar 

  83. Lagesen K, Hallin P, Rdland EA, Staerfeldt HH, Rognes T, and Ussery DW. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35, 3100–8.

    Article  PubMed  CAS  Google Scholar 

  84. Nawrocki EP, Kolbe DL, and Eddy SR. (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–7.

    Article  PubMed  CAS  Google Scholar 

  85. Yao Z, Weinberg Z, and Ruzzo WL. (2006) CMfinder – a covariance model based RNA motif finding algorithm. Bioinformatics 22, 445–52.

    Article  PubMed  CAS  Google Scholar 

  86. Weinberg Z, and Ruzzo WL. (2004) Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. Bioinformatics 1, i334–41.

    Article  CAS  Google Scholar 

  87. Klein RJ, and Eddy SR. (2003) RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4, 44.

    Article  PubMed  Google Scholar 

  88. Bafna V, and Zhang S. (2004) FastR: fast database search tool for non-coding RNA. Proc IEEE Comput Syst Bioinform Conf p. 52–61.

    Google Scholar 

  89. Lambert A, Fontaine JF, Legendre M, Leclerc F, Permal E, Major F, et al. (2004) The ERPIN server: an interface to profile-based RNA motif identification. Nucleic Acids Res 32, W160–5.

    Article  PubMed  CAS  Google Scholar 

  90. Gautheret D, and Lambert A. (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313, 1003–11.

    Article  PubMed  CAS  Google Scholar 

  91. Mosig A, Zhu L, and Stadler PF. (2009) Customized strategies for discovering distant ncRNA homologs. Brief Funct Gen Proteom 8, 451–60.

    Article  CAS  Google Scholar 

  92. Heyne S, Will S, Beckstette M, and Backofen R. (2009) Lightweight comparison of RNAs based on exact sequence-structure matches. Bioinformatics 25, 2095–102.

    Article  PubMed  CAS  Google Scholar 

  93. Eddy, SR. RNABOB: a program to search for RNA secondary structure motifs in sequence databases. http://selab.janelia.org/pub/software/rnabob.

  94. Gräf S, Strothmann D, Kurtz S, and Steger G. (2001) HyPaLib: a database of RNAs and RNA a structural elements defined by hybrid patterns. Nucleic Acids Res 29, 196–8.

    Article  PubMed  Google Scholar 

  95. Rehmsmeier M, Steffen P, Hochsmann M, and Giegerich R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–17.

    Article  PubMed  CAS  Google Scholar 

  96. Krüger J, and Rehmsmeier M. (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34, W451–4.

    Article  PubMed  CAS  Google Scholar 

  97. Enright AJ, John B, Gaul U, Tuschl T, Sander C, and Marks DS. (2003) MicroRNA targets in Drosophila. Genome Biol 5, R1.

    Article  PubMed  Google Scholar 

  98. John B, Enright AJ, Aravin A, Tuschl T, Sander C, and Marks DS. (2004) Human MicroRNA targets. PLoS Biol 2, e363.

    Article  PubMed  CAS  Google Scholar 

  99. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37, 495–500.

    Article  PubMed  CAS  Google Scholar 

  100. Kertesz M, Iovino N, Unnerstall U, Gaul U, and Segal E. (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39, 1278–84.

    Article  PubMed  CAS  Google Scholar 

  101. Lewis BP, Hung Shih I, Jones-Rhoades MW, Bartel DP, and Burge CB. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–98.

    Article  PubMed  CAS  Google Scholar 

  102. Lewis BP, Burge CB, and Bartel DP. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  103. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, et al. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165–78.

    Article  PubMed  CAS  Google Scholar 

  104. Rusinov V, Baev V, Minkov IN, and Tabler M. (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33, W696–700.

    Article  PubMed  CAS  Google Scholar 

  105. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–17.

    Article  PubMed  CAS  Google Scholar 

  106. Wang X, and Naqa IME. (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24, 325–32.

    Article  PubMed  CAS  Google Scholar 

  107. Kim SK, Nam JW, Rhee JK, Lee WJ, and Zhang BT. (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7, 411.

    Article  PubMed  CAS  Google Scholar 

  108. Yousef M, Jung S, Kossenkov AV, Showe LC, and Showe MK. (2007) Naïve Bayes for microRNA target predictions–machine learning for microRNA targets. Bioinformatics 23, 2987–92.

    Article  PubMed  CAS  Google Scholar 

  109. Dimitrov RA, and Zuker M. (2004) Prediction of hybridization and melting for double-stranded nucleic acids. Biophys J 87, 215–26.

    Article  PubMed  CAS  Google Scholar 

  110. Andronescu M, Zhang ZC, and Condon A. (2005) Secondary structure prediction of interacting RNA molecules. J Mol Biol 345, 987–1001.

    Article  PubMed  CAS  Google Scholar 

  111. Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, and Hofacker IL. (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1, 3.

    Article  PubMed  CAS  Google Scholar 

  112. Tafer H, and Hofacker IL. (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24, 2657–63.

    Article  PubMed  CAS  Google Scholar 

  113. Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, and Hofacker IL. (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–82.

    Article  PubMed  CAS  Google Scholar 

  114. Busch A, Richter AS, and Backofen R. (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–56.

    Article  PubMed  CAS  Google Scholar 

  115. Richter AS, Schleberger C, Backofen R, and Steglich C. (2010) Seed-based INTARNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr. Bioinformatics 26, 1–5.

    Article  PubMed  CAS  Google Scholar 

  116. Huang FWD, Qin J, Reidys CM, and Stadler PF. (2009) Partition function and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25, 2646–54.

    Article  PubMed  CAS  Google Scholar 

  117. Chitsaz H, Salari R, Sahinalp SC, and Backofen R. (2009) A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25, i365–73.

    Article  PubMed  CAS  Google Scholar 

  118. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37, W202–8.

    Article  PubMed  CAS  Google Scholar 

  119. Hiller M, Pudimat R, Busch A, and Backofen R. (2006) Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 34, e117.

    Article  PubMed  CAS  Google Scholar 

  120. Kumar M, Gromiha MM, Raghava GPS. (2008) Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 71, 189–94.

    Article  PubMed  CAS  Google Scholar 

  121. Cheng CW, Su ECY, Hwang JK, Sung TY, and Hsu WL. (2008) Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinformatics 9(12), S6.

    Article  PubMed  CAS  Google Scholar 

  122. Wang L, and Brown SJ. (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34, W243–8.

    Article  PubMed  CAS  Google Scholar 

  123. Terribilini M, Lee JH, Yan C, Jernigan RL, Honavar V, and Dobbs D. (2006) Prediction of RNA binding sites in proteins from amino acid sequence. RNA 12, 1450–62.

    Article  PubMed  CAS  Google Scholar 

  124. Wang Y, Xue Z, Shen G, and Xu J. (2008) PRINTR: prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids 35, 295–302.

    Article  PubMed  CAS  Google Scholar 

  125. Shulman-Peleg A, Shatsky M, Nussinov R, and Wolfson HJ. (2008) Prediction of interacting single-stranded RNA bases by protein-binding patterns. J Mol Biol 379, 299–316.

    Article  PubMed  CAS  Google Scholar 

  126. Bernhart SH, Hofacker IL, Will S, Gruber AR, and Stadler PF. (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9, 474.

    Article  PubMed  CAS  Google Scholar 

  127. Freyhult EK, Bollback JP, and Gardner PP. (2007) Exploring genomic dark matter: a critical assessment of the performance of homology search methods on non-coding RNA. Genome Res 17, 117–25.

    Article  PubMed  CAS  Google Scholar 

  128. Kaczkowski B, Torarinsson E, Reiche K, Havgaard JH, Stadler PF, and Gorodkin J. (2009) Structural profiles of human miRNA families from pairwise clustering. Bioinformatics 25, 291–4.

    Article  PubMed  CAS  Google Scholar 

  129. Alkan C, Karakoç E, Nadeau JH, Sahinalp SC, and Zhang K. (2006) RNA-RNA interaction prediction and antisense RNA target search. J Comput Biol 13, 267–82.

    Article  PubMed  CAS  Google Scholar 

  130. Draper DE. (1999) Themes in RNA-protein recognition. J Mol Biol 293, 255–70.

    Article  PubMed  CAS  Google Scholar 

  131. Auweter SD, Oberstrass FC, and Allain FHT. (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34, 4943–59.

    Article  PubMed  CAS  Google Scholar 

  132. Messias AC, and Sattler M. (2004) Structural basis of single-stranded RNA recognition. Acc Chem Res 37, 279–87.

    Article  PubMed  CAS  Google Scholar 

  133. Hall KB, and Stump WT. (1992) Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res 20, 4283–90.

    Article  PubMed  CAS  Google Scholar 

  134. Spassov DS, and Jurecic R. (2003) The PUF family of RNA-binding proteins: does evolutionarily conserved structure equal conserved function? IUBMB Life 55, 359–66.

    Article  PubMed  CAS  Google Scholar 

  135. de Moor CH, Meijer H, and Lissenden S. (2005) Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin Cell Dev Biol 16, 49–58.

    Article  PubMed  CAS  Google Scholar 

  136. Hudson BP, Martinez-Yamout MA, Dyson HJ, and Wright PE. (2004) Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11, 257–64.

    Article  PubMed  CAS  Google Scholar 

  137. Kulinski T, Olejniczak M, Huthoff H, Bielecki L, Pachulska-Wieczorek K, Das AT, et al. (2003) The apical loop of the HIV-1 TAR RNA hairpin is stabilized by a cross-loop base pair. J Biol Chem 278, 38892–901.

    Article  PubMed  CAS  Google Scholar 

  138. Clerte C, and Hall KB. (2004) Global and local dynamics of the U1A polyadenylation inhibition element (PIE) RNA and PIE RNA-U1A complexes. Biochemistry 43, 13404–15.

    Article  PubMed  CAS  Google Scholar 

  139. Leontis NB, and Westhof E. (2002) The annotation of RNA motifs. Comp Funct Genomics 3, 518–24.

    Article  PubMed  CAS  Google Scholar 

  140. Leontis NB, and Westhof E. (2003) Analysis of RNA motifs. Curr Opin Struct Biol 13, 300–8.

    Article  PubMed  CAS  Google Scholar 

  141. Hermann T, and Westhof E. (1999) Non-Watson-Crick base pairs in RNA-protein recognition. Chem Biol 6, R335–43.

    Article  PubMed  CAS  Google Scholar 

  142. Thompson W, McCue LA, Lawrence CE. (2005) Using the Gibbs motif sampler to find conserved domains in DNA and protein sequences. Curr Protoc Bioinf 2, Unit 2.8.

    Google Scholar 

  143. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, and Wootton JC. (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hackermüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reiche, K., Schutt, K., Boll, K., Horn, F., Hackermüller, J. (2011). Bioinformatics for RNomics. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics