Skip to main content

From Molecules to Man: The Dawn of a Vitreous Man

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

One of the greatest challenges to study the structure, function, and molecules in the living brain is that it is enclosed within the skull and difficult to access. Although biopsies are feasible, they are invasive, could lead to functional impairments, and in any case will only provide a small regional sample that is not necessarily reflecting the entire brain. Since the beginning of the twentieth century, in vivo imaging has gradually, and steadily, matured into non-invasive techniques that enable the repeated investigation of the structural, functional, cellular, and molecular composition of the brain. Not only is this information of great importance to scientists aiming to understand how the brain works, but these techniques are also essential to physicians who use imaging to diagnose and treat disease. The current book is a collection of 29 cutting-edge methods and protocols that are used in the current field of neuroimaging.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gall, F. J. Cranologie, ou decouvertes nouvelles concernant le cerveau, le crâne et les organes. Paris: F: H. Nicolle; 1807.

    Google Scholar 

  2. Spurzheim, J. G. Manuel de phrenologie. Paris: F: Porthann; 1832.

    Google Scholar 

  3. Magendie, F. An Elementary Treatise on Human Physiology. New York, NY: Harper; 1843.

    Google Scholar 

  4. Gould, S. J. The Mismeasure of Man. London: Penguin Books; 1981.

    Google Scholar 

  5. Harlow, J. M. Passage of an iron rod through the head. Boston Med Surg J 1848;39:389–393.

    Article  Google Scholar 

  6. Broca, P. Perte de la parole, ramolissement chroniqe et destruction partielle du lobe anterieure du cerveau. Bulletin De La Societe D’anthropologie 1861;2:235–238.

    Google Scholar 

  7. Dandy, W. E. Ventriculography following injection of air into the cerebral ventricles. Ann Surg 1918;68:5–11.

    Article  PubMed  CAS  Google Scholar 

  8. Dandy, W. E. Rontgenography of the brain after injection of air into the spinal canal. Ann Surg 1919;70:397–403.

    Article  PubMed  CAS  Google Scholar 

  9. Grossman, G. Tomography I. RöFO – Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 1935;51:61–80.

    Google Scholar 

  10. Grossman, G. Tomography II. RöFO – Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 1935;51:191–209.

    Google Scholar 

  11. Moniz, E. L’encephalographie arterielle, son importance dans la localization des tumeurs cerebrales. Rev Neurol 1927;34:72–90.

    Google Scholar 

  12. Cormack, A. M. Reconstruction of densities from their projections with applications in radiological physics. Phys Med Biol 1973;18:195–207.

    Article  PubMed  CAS  Google Scholar 

  13. Ambrose, J., Hounsfield, G. Computerized transverse axial scanning (tomography). Br J Radiogr 1973;46:1016–1022.

    Article  Google Scholar 

  14. Wagner, H. N., Jr., Burns, H. D., Dannals, R. F. et al. Imaging dopamine receptors in the human brain by positron tomography. Science 1983;221:1264–1266.

    Article  PubMed  CAS  Google Scholar 

  15. Friston, K. J., Passingham, R. E., Nutt, J. G., Heather, J. D., Sawle, G. V., Frackowiak, R. S. Localisation in PET images: Direct fitting of the intercommissural (AC-PC) line. J Cereb Blood Flow Metab 1989;9:690–695.

    Article  PubMed  CAS  Google Scholar 

  16. Ogawa, S., Lee, T. M., Kay, A. R., Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;7:9868–9872.

    Article  Google Scholar 

  17. Ogawa, S., Tank, D. W., Menon, R. et al. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89:5951–5955.

    Article  PubMed  CAS  Google Scholar 

  18. Mangia, S., Giove, F., Tkac, I. et al. Metabolic and hemodynamic events after changes in neuronal activity: Current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009;29:441–463.

    Article  PubMed  CAS  Google Scholar 

  19. Breiter, H. C., Etcoff, N. L., Whalen, P. J. et al. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 1996;17:875–887.

    Article  PubMed  CAS  Google Scholar 

  20. Vul, E., Harris, C., Winkielman, P., Pashler, H. Puzzling high correlations in fMRI studies of emotion, personality, and social cognition. Perspect Psychol Sci 2009;4:274–290.

    Article  Google Scholar 

  21. Kennedy, D. Neuroimaging: Revolutionary research tool or a post-modern phrenology? Am J Bioeth 2005;5:19, discussion W3–4.

    PubMed  Google Scholar 

  22. Raichle, M. E. Modern phrenology: Maps of human cortical function. Ann N Y Acad Sci 1999;882:107–118, discussion 28–34.

    Article  PubMed  CAS  Google Scholar 

  23. Basser, P. J., Mattiello, J., LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–267.

    Article  PubMed  CAS  Google Scholar 

  24. Catani, M., ffytche, D. H. The rises and falls of disconnection syndromes. Brain 2005;128:2224–2239.

    Article  PubMed  Google Scholar 

  25. Good, C. D., Scahill, R. I., Fox, N. C. et al. Automatic differentiation of anatomical patterns in the human brain: Validation with studies of degenerative dementias. Neuroimage 2002;17:29–46.

    Article  PubMed  Google Scholar 

  26. Bates, E., Wilson, S. M., Saygin, A. P. et al. Voxel-based lesion-symptom mapping. Nat Neurosci 2003;6:448–450.

    PubMed  CAS  Google Scholar 

  27. Griffith, H. R., Stewart, C. C., den Hollander, J. A. Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment. Int Rev Neurobiol 2009;84:105–131.

    Article  PubMed  CAS  Google Scholar 

  28. Manganas, L. N., Zhang, X., Li, Y. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 2007;318:980–985.

    Article  PubMed  CAS  Google Scholar 

  29. Jansen, J. F., Gearhart, J. D., Bulte, J. W. Comment on “magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain”. Science 2008;321:640.

    Article  PubMed  CAS  Google Scholar 

  30. Kornguth, S. E., Turski, P. A., Perman, W. H. et al. Magnetic resonance imaging of gadolinium-labeled monoclonal antibody polymers directed at human T lymphocytes implanted in canine brain. J Neurosurg 1987;66:898–906.

    Article  PubMed  CAS  Google Scholar 

  31. Louie, A. Y., Huber, M. M., Ahrens, E. T. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000;18:321–325.

    Article  PubMed  CAS  Google Scholar 

  32. Wolff, S. D., Balaban, R. S. Nmr imaging of labile proton-exchange. J Magn Reson 1990;86:164–169.

    CAS  Google Scholar 

  33. McMahon, M. T., Gilad, A. A., DeLiso, M. A., Berman, S. M., Bulte, J. W., van Zijl, P. C. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 2008;60:803–812.

    Article  PubMed  CAS  Google Scholar 

  34. Jacobs, R. E., Fraser, S. E. Magnetic resonance microscopy of embryonic cell lineages and movements. Science 1994;263:681–684.

    Article  PubMed  CAS  Google Scholar 

  35. Bulte, J. W., Zhang, S., van Gelderen, P. et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999;96:15256–15261.

    Article  PubMed  CAS  Google Scholar 

  36. Koretsky, A. P., Traxler, B. A. The B isozyme of creatine kinase is active as a fusion protein in escherichia coli: In vivo detection by 31p NMR. FEBS Lett 1989;243:8–12.

    Article  PubMed  CAS  Google Scholar 

  37. Ratner, A. V., Hurd, R., Muller, H. H. et al. 19f magnetic resonance imaging of the reticuloendothelial system. Magn Reson Med 1987;5:548–554.

    Article  PubMed  CAS  Google Scholar 

  38. Burt, C. T., Moore, R. R., Roberts, M. F., Brady, T. J. The fluorinated anesthetic halothane as a potential NMR biologic probe. Biochim Biophys Acta 1984;805:375–381.

    Article  PubMed  CAS  Google Scholar 

  39. Hinds, K. A., Hill, J. M., Shapiro, E. M. et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003;102:867–872.

    Article  PubMed  CAS  Google Scholar 

  40. Gleich, B., Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005;435:1214–1217.

    Article  PubMed  CAS  Google Scholar 

  41. Yang, S., Zhang, C., Zhu, T. et al. Resection of gliomas using positron emission tomography/computed tomography neuronavigation. Neurol Med Chir (Tokyo) 2007;47:397–401, discussion 2.

    Article  CAS  Google Scholar 

  42. Garlick, P. B., Marsden, P. K., Cave, A. C. et al. PET and NMR dual acquisition (PANDA): Applications to isolated, perfused rat hearts. NMR Biomed 1997;10:138–142.

    Article  PubMed  CAS  Google Scholar 

  43. Rontgen, W. C. 1895. Eine neure Art von Strahlen. Sitzungsberichte der Physikalish-medizinischen Gesellschaft Zu Wurzburg 1895.

    Google Scholar 

  44. Bachem, C., Gunther, H. Z. Bariumsulfat also schattenbioldendes kontrastmittel bei rontgenuntersuchungen. Zeitschrift Fur Rontgenkunde Und Radiumforschung 1910;12:369–376.

    Google Scholar 

  45. Christiansen, I. A., Hevesy, G., Lomholt, S. Chimie physiologique. Recherches, par une methode radiochimique, sur la circulation du bismuth dans l’organism. Compte Rendu De L’academie Des Sciences 1924;178:1324–1326.

    CAS  Google Scholar 

  46. Gorter, C. J. Paramagnetic relaxation. Physica 1936;3:503–514.

    Article  CAS  Google Scholar 

  47. Rabi, I. I., Zacharias, J. R., Millman, S., Kusch, P. A new method of measuring nuclear magnetic moment. Phys Rev 1938;53:526–535.

    Google Scholar 

  48. Bloch, F., Rabi, I. I. Atoms in variable magnetic fields. Rev Mod Phys 1945;17:237–244.

    Article  CAS  Google Scholar 

  49. Purcell, E. M., Torrey, H. C., Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946;69:37–38.

    Article  CAS  Google Scholar 

  50. Brownell, G. L., Sweet, W. H. Localization of brain tumors with positron emitters. Nucleonics 1953;11:40–45.

    Google Scholar 

  51. Kuhl, D. E., Chamber, R. H., Hale, J., Gorson, R. O. A high-contrast photographic recorder for scintillation counter scanning. Radiology 1956;66:730–739.

    PubMed  CAS  Google Scholar 

  52. Anger, H. O. Scintillation camera. Rev Sci Instrum 1958;29:27–33.

    Article  CAS  Google Scholar 

  53. Rankowitz, S., Robertson, J. S., Higinbotham, W. A., Rosenblum, M. J. Positron scanner for locating brain tumors. Proc Inst Radio Eng Int Conv Rec 1962;9:49–56.

    Google Scholar 

  54. Kuhl, D. E., Edwards, R. Q. Image separation radioisotoe scanning. Radiology 1963;80:653–662.

    Google Scholar 

  55. Harper, P. V., Lathrop, K. A., Jiminez, F., Fink, R., Gottschalk, A. Technetium 99m as a scanning agent. Radiology 1965;85:101–109.

    PubMed  CAS  Google Scholar 

  56. Damadian, R. Tumor detection by nuclear magnetic resonance. Science 1971;171:1151–1153.

    Article  PubMed  CAS  Google Scholar 

  57. Garroway, A., Grannell, P. K., Mansfield, P. Image formation in NMR by a selective irradiative process. J Phys Part C Solid State Phys 1974;7:L457–L462.

    Article  CAS  Google Scholar 

  58. Lauterbu, P. C. Image formation by induced local interactions – Examples employing nuclear magnetic-resonance. Nature 1973;242:190–191.

    Article  Google Scholar 

  59. Budinger, T. F., Gullberg, G. T. Letter: Three-dimensional reconstruction of isotope distributions. Phys Med Biol 1974;19:387–389.

    Article  PubMed  CAS  Google Scholar 

  60. Hoult, D. I., Busby, S. J., Gadian, D. G., Radda, G. K., Richards, R. E., Seeley, P. J. Observation of tissue metabolites using 31p nuclear magnetic resonance. Nature 1974;252:285–287.

    Article  PubMed  CAS  Google Scholar 

  61. Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J., Mullani, N. A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89–98.

    PubMed  CAS  Google Scholar 

  62. Phelps, M. E., Hoffman, E. J., Mullani, N. A., Ter-Pogossian, M. M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975;16:210–224.

    PubMed  CAS  Google Scholar 

  63. Kuhl, D. E., Reivich, M., Alavi, A., Nyary, I., Staum, M. M. Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res 1975;36:610–619.

    PubMed  CAS  Google Scholar 

  64. Kumar, A., Welti, D., Ernst, R. R. NMR fourier zeugmatography. J Magn Reson 1975;18:69–83.

    CAS  Google Scholar 

  65. Jaszczak, R. J., Murphy, P. H., Huard, D., Burdine, J. A. Radionuclide emission computed tomography of the head with 99mCc and a scintillation camera. J Nucl Med 1977;18:373–380.

    PubMed  CAS  Google Scholar 

  66. Damadian, R., Goldsmith, M., Minkoff, L. NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys 1977;9:97–100.

    PubMed  CAS  Google Scholar 

  67. Reivich, M., Kuhl, D., Wolf, A. et al. Measurement of local cerebral glucose metabolism in man with 18f-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl 1977;64:190–191.

    PubMed  CAS  Google Scholar 

  68. Mansfield, P., Maudsley, A. A. Medical imaging by NMR. Br J Radiol 1977;50:188–194.

    Article  PubMed  CAS  Google Scholar 

  69. Edelstein, W. A., Hutchison, J. M., Johnson, G., Redpath, T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 1980;25:751–756.

    Article  PubMed  CAS  Google Scholar 

  70. Young, I. R., Clarke, G. J., Bailes, D. R., Pennock, J. M., Doyle, F. H., Bydder, G. M. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr 1981;5:543–547.

    Article  PubMed  CAS  Google Scholar 

  71. Weinmann, H. J., Brasch, R. C., Press, W. R., Wesbey, G. E. Characteristics of gadolinium-DTPA complex: A potential NMR contrast agent. AJR Am J Roentgenol 1984;142:619–624.

    PubMed  CAS  Google Scholar 

  72. Nishimura, D. G., Macovski, A., Pauly, J. M. Magnetic resonance angiography. IEEE Trans Med Imaging 1986;5:140–151.

    Article  PubMed  CAS  Google Scholar 

  73. Kalender, W. A., Seissler, W., Klotz, E., Vock, P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990;176:181–183.

    PubMed  CAS  Google Scholar 

  74. Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., Josephson, L. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–493.

    PubMed  CAS  Google Scholar 

  75. Tjuvajev, J. G., Stockhammer, G., Desai, R. et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–6132.

    PubMed  CAS  Google Scholar 

  76. Wright, I. C., McGuire, P. K., Poline, J. B. et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 1995;2:244–252.

    Article  PubMed  CAS  Google Scholar 

  77. Kinahan, P. E., Townsend, D. W., Beyer, T., Sashin, D. Attenuation correction for a combined 3d PET/CT scanner. Med Phys 1998;25:2046–2053.

    Article  PubMed  CAS  Google Scholar 

  78. Pruessmann, K. P., Weiger, M., Scheidegger, M. B., Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–962.

    Article  PubMed  CAS  Google Scholar 

  79. Ward, K. M., Aletras, A. H., Balaban, R. S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Modo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Modo, M., Bulte, J.W. (2011). From Molecules to Man: The Dawn of a Vitreous Man. In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics