Skip to main content

Genetic Tools for Analysis of FoxP3+ Regulatory T Cells In Vivo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 707))

Abstract

The discovery of Foxp3 as a reliable marker for murine regulatory T cells has led to an explosion in the development of genetic tools for investigating the biology of regulatory T cells. More than 25 Foxp3-based mouse strains have been published with a variety of characteristics. The effects of Foxp3 expression can be analyzed using null, hypomorphic, conditional, altered control, and over-expression strains. Reporter strains are available to efficiently isolate Foxp3+ cells, with various reporter designs in terms of construct (fusion, replacement, and bicistronic positioning), and reporter system (GFP, YFP, RFP, Luciferase, Thy1.1). Multifunction strain fusion, replacement, and bicistronic positionings add functional proteins under the control of the Foxp3 promoter allowing induced apoptosis or lineage-specific Cre recombinase activity. In this chapter, we discuss the uses of the cornucopia of genetic tools, in isolation and in combination, for research on Foxp3+ regulatory T cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Russell WL, Russell LB, Gower JS. (1959) Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female. Proc Natl Acad Sci U S A; 45: 554–60.

    Article  PubMed  CAS  Google Scholar 

  2. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet; 27: 68–73.

    Article  PubMed  CAS  Google Scholar 

  3. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet; 27: 20–1.

    Article  PubMed  CAS  Google Scholar 

  4. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet; 27: 18–20.

    Article  PubMed  CAS  Google Scholar 

  5. Pirie E, Beutler B, Mutagenetix. (2008) Record for “crusty”, updated November 14, 2008 J:141212. MGI Direct Data Submission.

    Google Scholar 

  6. Fontenot JD, Gavin MA, Rudensky AY. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol; 4: 330–6.

    Article  PubMed  CAS  Google Scholar 

  7. Lin W, Truong N, Grossman WJ, Haribhai D, Williams CB, Wang J et al. (2005) Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin Immunol; 116: 1106–15.

    Article  PubMed  CAS  Google Scholar 

  8. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity; 22: 329–41.

    Article  PubMed  CAS  Google Scholar 

  9. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature; 441: 235–8.

    Article  PubMed  CAS  Google Scholar 

  10. Haribhai D, Lin W, Relland LM, Truong N, Williams CB, Chatila TA. (2007) Regulatory T cells dynamically control the primary immune response to foreign antigen. J Immunol; 178: 2961–72.

    PubMed  CAS  Google Scholar 

  11. Wang Y, Kissenpfennig A, Mingueneau M, Richelme S, Perrin P, Chevrier S et al. (2008) Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T Cells. J Immunol; 180: 1565–75.

    PubMed  CAS  Google Scholar 

  12. Wan YY, Flavell RA. (2005) Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A; 102: 5126–31.

    Article  PubMed  CAS  Google Scholar 

  13. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA et al. (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature; 445: 771–5.

    Article  PubMed  CAS  Google Scholar 

  14. Wan YY, Flavell RA. (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature; 445: 766–70.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature; 463: 808–12.

    Article  PubMed  CAS  Google Scholar 

  16. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science; 322: 271–5.

    Article  PubMed  CAS  Google Scholar 

  17. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X et al. (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity; 28: 546–58.

    Article  PubMed  CAS  Google Scholar 

  18. Kim JM, Rasmussen JP, Rudensky AY. (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol; 8: 191–7.

    Article  PubMed  CAS  Google Scholar 

  19. Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA et al. (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A; 105: 11903–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kuczma M, Podolsky R, Garge N, Daniely D, Pacholczyk R, Ignatowicz L et al. (2009) Foxp3-deficient regulatory T cells do not revert into conventional effector CD4+ T cells but constitute a unique cell subset. J Immunol; 183: 3731–41.

    Article  PubMed  CAS  Google Scholar 

  21. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G et al. (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med; 204: 57–63.

    Article  PubMed  CAS  Google Scholar 

  22. Feuerer M, Shen Y, Littman DR, Benoist C, Mathis D. (2009) How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity; 31: 654–64.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al. (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med; 205: 1983–91.

    Article  PubMed  CAS  Google Scholar 

  24. Suffner J, Hochweller K, Kuhnle MC, Li X, Kroczek RA, Garbi N et al. (2010) Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3 LuciDTR mice. J Immunol; 184: 1810–20.

    Article  PubMed  CAS  Google Scholar 

  25. Guo L, Tian J, Marinova E, Zheng B, Han S. (2010) Inhibition of clonal expansion by Foxp3 expression as a mechanism of controlled T-cell responses and autoimmune disease. Eur J Immunol; 40: 71–80.

    Article  PubMed  CAS  Google Scholar 

  26. Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR et al. (2007) Lack of Foxp3 function and expression in the thymic epithelium. J Exp Med; 204: 475–80.

    Article  PubMed  CAS  Google Scholar 

  27. Williams LM, Rudensky AY. (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol; 8: 277–84.

    Article  PubMed  CAS  Google Scholar 

  28. Chikuma S, Bluestone JA. (2007) Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur J Immunol; 37: 1285–9.

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt KN, Hsu CW, Griffin CT, Goodnow CC, Cyster JG. (1998) Spontaneous follicular exclusion of SHP1-deficient B cells is conditional on the presence of competitor wild-type B cells. J Exp Med; 187: 929–37.

    Article  PubMed  CAS  Google Scholar 

  30. Almeida AR, Legrand N, Papiernik M, Freitas AA. (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol; 169: 4850–60.

    PubMed  Google Scholar 

  31. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY et al. (2007) Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med; 204: 2159–69.

    Article  PubMed  CAS  Google Scholar 

  32. Liston A, Lu LF, O’Carroll D, Tarakhovsky A, Rudensky AY. (2008) Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med; 205: 1993–2004.

    Article  PubMed  CAS  Google Scholar 

  33. Chong MM, Rasmussen JP, Rudensky AY, Littman DR. (2008) The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med; 205: 2005–17.

    Article  PubMed  CAS  Google Scholar 

  34. Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ et al. (2006) Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol; 176: 3301–5.

    PubMed  CAS  Google Scholar 

  35. Couper KN, Blount DG, de Souza JB, Suffia I, Belkaid Y, Riley EM. (2007) Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 ­treatment in malaria-infected mice. J Immunol; 178: 4136–46.

    PubMed  CAS  Google Scholar 

  36. Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT et al. (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods; 2: 419–26.

    Article  PubMed  CAS  Google Scholar 

  37. Lahl K, Mayer CT, Bopp T, Huehn J, Loddenkemper C, Eberl G et al. (2009) Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice. J Immunol; 183: 5662–72.

    Article  PubMed  CAS  Google Scholar 

  38. Nor JE, Hu Y, Song W, Spencer DM, Nunez G. (2002) Ablation of microvessels in vivo upon dimerization of iCaspase-9. Gene Ther; 9: 444–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Liston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jeremiah, N.M., Liston, A. (2011). Genetic Tools for Analysis of FoxP3+ Regulatory T Cells In Vivo. In: Kassiotis, G., Liston, A. (eds) Regulatory T Cells. Methods in Molecular Biology, vol 707. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-979-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-979-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-978-9

  • Online ISBN: 978-1-61737-979-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics