Skip to main content

The Isolation and Culture of Human Cord Blood-Derived Mesenchymal Stem Cells Under Low Oxygen Conditions

  • Protocol
  • First Online:
Mesenchymal Stem Cell Assays and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 698))

Abstract

There is growing evidence that low oxygen conditions are beneficial for in vitro stem cell culturing. Mimicking the physiological oxygen tension of the placental stem cell niche in cell expansion can ­ultimately result in more robust cell expansion. Growing evidence also suggests that hypoxic preconditioning of cells may improve therapeutic outcomes. Here we describe a scalable method that enables mesenchymal stromal cell expansion from virtually every cord blood unit, including those that would normally be disqualified from banking. In addition, the cells obtained by the described method fulfill exclusively the mesenchymal stromal cell characteristics defined by the International Society for Cellular Therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erecinska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 2001;128:263–76.

    Article  PubMed  CAS  Google Scholar 

  2. Papandreou I, Powell A, Lim AL, Denko N. Cellular reaction to hypoxia: sensing and responding to an adverse environment. Mutat Res 2005;569:87–100.

    Article  PubMed  CAS  Google Scholar 

  3. Ivanovic Z. Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol 2009;219:271–5.

    Article  PubMed  CAS  Google Scholar 

  4. Hung SC, Pochampally RR, Hsu SC, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2007;2:e416.

    Article  PubMed  Google Scholar 

  5. Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 2007;27:5737–45.

    Article  PubMed  CAS  Google Scholar 

  6. Carrancio S, Lopez-Holgado N, Sanchez-Guijo FM, et al. Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification. Exp Hematol 2008;36:1014–21.

    Article  PubMed  CAS  Google Scholar 

  7. Michelakis ED, Rebeyka I, Wu X, et al. O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res 2002;91:478–86.

    Article  PubMed  CAS  Google Scholar 

  8. Bertram C, Hass R. Cellular responses to reactive oxygen species-induced DNA ­damage and aging. Biol Chem 2008;389:211–20.

    Article  PubMed  CAS  Google Scholar 

  9. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 1998;273:11619–24.

    Article  PubMed  CAS  Google Scholar 

  10. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 2006;91:807–19.

    Article  PubMed  CAS  Google Scholar 

  11. Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009;104:1209–16.

    Article  PubMed  CAS  Google Scholar 

  12. Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008;26:2173–82.

    Article  PubMed  CAS  Google Scholar 

  13. Muller I, Kordowich S, Holzwarth C, et al. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 2006;8:437–44.

    Article  PubMed  CAS  Google Scholar 

  14. Krampera M, Pasini A, Rigo A, et al. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood 2005;106:59–66.

    Article  PubMed  CAS  Google Scholar 

  15. Hong L, Sultana H, Paulius K, Zhang G. Steroid regulation of proliferation and ­osteogenic differentiation of bone marrow stromal cells: a gender difference. J Steroid Biochem Mol Biol 2009;114:180–5.

    Article  PubMed  CAS  Google Scholar 

  16. Fan X, Liu T, Liu Y, Ma X, Cui Z. Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design. Biotechnol Prog 2009;25:499–507.

    Article  PubMed  CAS  Google Scholar 

  17. Chase LG, Firpo MT. Development of serum-free culture systems for human embryonic stem cells. Curr Opin Chem Biol 2007;11:367–72.

    Article  PubMed  CAS  Google Scholar 

  18. Reddy NP, Vemuri MC, Pallu R. Isolation of stem cells from human umbilical cord blood. Methods Mol Biol 2007;407:149–63.

    Article  PubMed  CAS  Google Scholar 

  19. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–7.

    Article  PubMed  CAS  Google Scholar 

  20. Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 2006;207:331–9.

    Article  PubMed  CAS  Google Scholar 

  21. Milner R, Hung S, Erokwu B, Dore-Duffy P, LaManna JC, del Zoppo GJ. Increased expression of fibronectin and the alpha 5 beta 1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci 2008;38:43–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saara Laitinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Laitinen, A., Nystedt, J., Laitinen, S. (2011). The Isolation and Culture of Human Cord Blood-Derived Mesenchymal Stem Cells Under Low Oxygen Conditions. In: Vemuri, M., Chase, L., Rao, M. (eds) Mesenchymal Stem Cell Assays and Applications. Methods in Molecular Biology, vol 698. Humana Press. https://doi.org/10.1007/978-1-60761-999-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-999-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-998-7

  • Online ISBN: 978-1-60761-999-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics