Skip to main content

Modeling Mass Spectrometry-Based Protein Analysis

  • Protocol
  • First Online:
Bioinformatics for Comparative Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 694))

Abstract

The success of mass spectrometry based proteomics depends on efficient methods for data analysis. These methods require a detailed understanding of the information value of the data. Here, we describe how the information value can be elucidated by performing simulations using synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eriksson J, Fenyo D. (2007) Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat Biotechnol 25, 651ā€“655.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90, 5011ā€“5015.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Mann M, Wilm M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390ā€“4399.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Eng JK, McCormack AL, Yates JR. (1994) An approach to correlate mass spectral data with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Craig R, Cortens JC, Fenyo D, Beavis RC. (2006) Using annotated peptide mass Ā­spectrum libraries for protein identification. J Proteome Res 5, 1843ā€“1849.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R. (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7, 655ā€“667.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Fenyo D, Qin J, Chait BT. (1998) Protein identification using mass spectrometric information. Electrophoresis 19, 998ā€“1005.

    CASĀ  Google ScholarĀ 

  8. Eriksson J, Fenyo D. (2004) Probity, a protein identification algorithm with accurate assignment of the statistical significance of the results. J Proteome Res 3, 32ā€“36.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Field HI, Fenyo D, Beavis RC. (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics 2, 36ā€“47.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Fenyo D, Beavis RC. (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75, 768ā€“774.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Eriksson J, Chait BT, Fenyo D. (2000) A Ā­statistical basis for testing the significance of mass spectrometric protein identification results. Anal Chem 72, 999ā€“1005.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Eriksson J, Fenyo D. (2004) The statistical significance of protein identification results as a function of the number of protein sequences searched. J Proteome Res 3, 979ā€“982.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Eriksson J, Fenyo D. (2005) Protein identification in complex mixtures. J Proteome Res 4, 387ā€“393.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Jensen ON, Podtelejnikov AV, Mann M. (1997) Identification of the components of simple protein mixtures by high accuracy peptide mass mapping and database searching. Anal Chem 69, 4741ā€“4750.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Eriksson J, Fenyo D. (2009) Peptide identification with direct computation of the significance level of the results. Proceedings of the 57th ASMS Conference on Mass Spectrometry.

    Google ScholarĀ 

  16. Fenyo D, Ossipova E, Eriksson J. (2008) The peptide fragment mass information required to identify peptides and their post-translational modifications. Proceedings of the 56th ASMS Conference on Mass Spectrometry.

    Google ScholarĀ 

Download references

Acknowledgments

This work was supported by funding provided by the National Institutes of Health Grants CA126485, DE018385, NS050276, RR00862 and RR022220, the Carl Trygger foundation, and the Swedish research council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fenyƶ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eriksson, J., Fenyƶ, D. (2011). Modeling Mass Spectrometry-Based Protein Analysis. In: Wu, C., Chen, C. (eds) Bioinformatics for Comparative Proteomics. Methods in Molecular Biology, vol 694. Humana Press. https://doi.org/10.1007/978-1-60761-977-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-977-2_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-976-5

  • Online ISBN: 978-1-60761-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics