Skip to main content

Drill Hole Defects: Induction, Imaging, and Analysis in the Rodent

  • Protocol
  • First Online:
Book cover Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Advances in stem therapy, scaffolds, and therapeutic biomolecules are accelerating bone repair research, and model systems are required to test new methods and concepts. The drill hole defect is one such model and is used to study a variety of bone defects and potential therapies designed to repair these injuries. We detail the methodologies required to successfully generate and evaluate drill hole defects. Although performing a successful drill hole defect requires patience and dexterity, investing the time to perfect the technique will provide ample opportunity for the researcher to expand his/her particular research interests. Mastering this technique will allow testing of stem cell therapies, novel scaffold designs, and biomolecules that can be used for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, S., and Ponnazhagan, S. (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J. 21, 3917–3927.

    Article  PubMed  CAS  Google Scholar 

  2. Lee, S.W., Padmanabhan, P., Ray, P., Gambhir, S.S., Doyle, T., Contag, C., et al. (2009) Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res. 27(3), 295–302.

    Article  PubMed  Google Scholar 

  3. Hayashi, O., Katsube, Y., Hirose, M., Ohgushi, H., and Ito, H. (2008) Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int . 82(3), 238–247.

    Article  PubMed  CAS  Google Scholar 

  4. Chang, S.C., Chuang, H., Chen, Y.R., Yang, L.C., Chen, J.K., Mardini, S., et al. (2004) Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res. 119(1), 85–91.

    Article  PubMed  CAS  Google Scholar 

  5. Cui, L., Liu, B., Liu, G., Zhang, W., Cen, L., Sun, J., et al. (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 28(36), 5477–5486.

    Article  PubMed  CAS  Google Scholar 

  6. Centeno, C.J., Busse, D., Kisiday, J., Keohan, C., Freeman, M., and Karli, D. (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 11(3), 343–353.

    PubMed  Google Scholar 

  7. Bikram, M., Fouletier-Dilling, C., Hipp, J.A., Gannon, F., Davis, A.R., Olmsted-Davis, E.A., et al. (2007) Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells. Ann Biomed Eng. 35(5), 796–807.

    Article  PubMed  Google Scholar 

  8. Ge, Z., Tian, X., Heng, B.C., Fan, V., Yeo, J.F., and Cao, T. (2009) Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Biomed Mater. 4(2), 21001.

    Article  Google Scholar 

  9. Petersen, W,. Zelle, S., and Zantop, T. (2008) Arthroscopic implantation of a three dimensional scaffold for autologous chondrocyte transplantation. Arch Orthop Trauma Surg. 128(5), 505–508.

    Article  PubMed  Google Scholar 

  10. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., et al. (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 26(23), 4817–4827.

    Article  PubMed  CAS  Google Scholar 

  11. Claase, M.B., de Bruijn, J.D., Grijpma, D.W., and Feijen, J. (2007) Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity. J Mater Sci Mater Med. 18(7), 1299–1307.

    Article  PubMed  CAS  Google Scholar 

  12. Krupa, P., Krsek, P., Javornik, M., Dostál, O., Srnec, R., Usvald, D., et al. (2007) Use of 3D geometry modeling of osteochondrosis-like iatrogenic lesions as a template for press-and-fit scaffold seeded with mesenchymal stem cells. Physiol Res. 56(Suppl 1), S107–S114.

    PubMed  Google Scholar 

  13. Weinand, C., Pomerantseva, I., Neville, C.M., Gupta, R., Weinberg, E., Madisch, I., et al. (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone. 38(4), 555–563.

    Article  PubMed  CAS  Google Scholar 

  14. Bolland, B.J., Kanczler, J.M., Dunlop, D.G., and Oreffo, R.O. (2008) Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bone. 43(1), 195–202.

    Article  PubMed  CAS  Google Scholar 

  15. Park, C.H., Abramson, Z.R., Taba, M. Jr., Jin, Q., Chang, J., Kreider, J.M., et al. (2007) Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol. 78(2), 273–281.

    Article  PubMed  Google Scholar 

  16. Datir, A.P. (2007) Stress-related bone injuries with emphasis on MRI. Clin Radiol. 62(9), 828–836.

    Article  PubMed  CAS  Google Scholar 

  17. Ecklund, K., Vajapeyam, S., Feldman, H.A., Buzney, C.D., Mulkern, R.V., Kleinman, P.K., et al. (2010) Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 25(2), 298–304.

    Article  PubMed  Google Scholar 

  18. Ehrhart, N., Kraft, S., Conover, D., Rosier, R.N., and Schwarz, E.M. (2008) Quantification of massive allograft healing with dynamic contrast enhanced-MRI and cone beam-CT: a pilot study. Clin Orthop Relat Res. 466(8), 1897–1904.

    Article  PubMed  Google Scholar 

  19. Moinnes, J.J., Vidula, N., Halim, N., and Othman, S.F. (2006) Ultrasound accelerated bone tissue engineering monitored with magnetic resonance microscopy. Conf Proc IEEE Eng Med Biol Soc. 1, 484–488.

    Article  PubMed  Google Scholar 

  20. Love, Z., Wang, F., Dennis, J., Awadallah, A., Salem, N., Lin, Y., et al. (2007) Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med. 48(12), 2011–2020.

    Article  PubMed  Google Scholar 

  21. Pereira, A.C., Fernandes, R.G., Carvalho, Y.R., Balducci, I., Faig-Leite, H. (2007) Bone healing in drill hole defects in spontaneously hypertensive male and female rats’ femurs. A histological and histometric study. Arq Bras Cardiol. 88(1), 104–109.

    Article  PubMed  Google Scholar 

  22. Katae, Y., Tanaka, S., Sakai, A., Nagashima, M., Hirasawa, H., and Nakamura, T. (2009) Elcatonin injections suppress systemic bone resorption without affecting cortical bone regeneration after drill-hole injuries in mice. J Orthop Res. 27(12), 1652–1658.

    Article  PubMed  CAS  Google Scholar 

  23. Nagashima, M., Sakai, A., Uchida, S., Tanaka, S., Tanaka, M., and Nakamura, T. (2005) Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone. 36(3), 502–511.

    Article  PubMed  CAS  Google Scholar 

  24. Obenaus, A., and Smith, A. (2004) Radiation dose in rodent tissues during micro-CT Imaging. J X-Ray Sci Technol. 12, 241–249.

    CAS  Google Scholar 

  25. Willey, J.S., Grilly, L.G., Howard, S.H., Pecaut, M.J., Obenaus, A., Gridley, D.S., et al. (2008) Bone architectural and structural properties after 56Fe26+ radiation-induced changes in body mass. Radiat Res. 170(2), 201–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Obenaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Obenaus, A., Hayes, P. (2011). Drill Hole Defects: Induction, Imaging, and Analysis in the Rodent. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics