Skip to main content

Methods for Investigation of Osteoclastogenesis Using Mouse Embryonic Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Investigation of osteoclastogenesis in vivo, especially in early development, has proven difficult because of the accessibility of these early embryonic stages. Our ability to culture embryonic stem cells (ESCs) in vitro has overcome this difficulty as these versatile cells can be expanded endlessly. Thus, the whole process of osteoclastogenesis can be monitored in these cultures through the microscope and with the help of molecular biology techniques. We have developed two methods to induce osteoclasts, the bone matrix remodeling cells, from murine ESCs. Surprisingly, one of these induction methods produces osteoclasts, osteoblasts, and also endothelial cells in the same culture dish. Hence, it is likely that ESCs in culture mimic the in vivo development of osteoclasts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mundy, G.R., and Roodman, G.D. (1987) Osteoclast ontogeny and function. J. Bone Miner. Res. 5, 209–279.

    Google Scholar 

  2. Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.

    Article  PubMed  CAS  Google Scholar 

  3. Niida, S., Abe, M., Suemune, S., Yoshiko, Y., Maeda, N., and Yamasaki, A. (1997) Restoration of disturbed tooth eruption in osteopetrotic (op/op) mice by injection of macrophage colony-stimulating factor. Exp. Anim. 46, 95–101.

    Article  PubMed  CAS  Google Scholar 

  4. Yoshino, M., Yamazaki, H., Yoshida, H., Niida, S., Nishikawa, S., Ryoke, K., et al. (2003) Reduction of osteoclasts in a critical embryonic period is essential for inhibition of mouse tooth eruption. J. Bone Miner. Res. 18, 108–116.

    Article  PubMed  Google Scholar 

  5. Tagaya, H., Kunisada, T., Yamazaki, H., Yamane, T., Tokuhisa, T., Wagner, E.F., et al. (2000) Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood 95, 3363–3370.

    PubMed  CAS  Google Scholar 

  6. Shivdasani, R.A., Mayer, E.L., and Orkin S.H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434.

    Article  PubMed  CAS  Google Scholar 

  7. Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F.W., and Orkin, S.H. (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57.

    Article  PubMed  CAS  Google Scholar 

  8. Yamane, T., Kunisada, T., Yamazaki, H., Nakano, T., Orkin, S.H., and Hayashi, S.I. (2000) Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development. Exp. Hematol. 28, 833–840.

    Article  PubMed  CAS  Google Scholar 

  9. Okuyama, H., Tsuneto, M., Yamane, T., Yamazaki, H., and Hayashi, S. (2003) Discrete types of osteoclast precursors can be generated from embryonic stem cells. Stem Cells 21, 670–680.

    Article  PubMed  CAS  Google Scholar 

  10. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.

    PubMed  CAS  Google Scholar 

  11. Scott, E.W., Simon, M.C., Anastasi, J., and Singh, H. (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577.

    Article  PubMed  CAS  Google Scholar 

  12. Tondravi, M.M., McKercher, S.R., Anderson, K., Erdmann, J.M., Quiroz, M., Maki, R., et al. (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81–84.

    Article  PubMed  CAS  Google Scholar 

  13. Tsuneto, M., Tominaga, A., Yamazaki, H., Yoshino, M., Orkin, S.H., and Hayashi, S. (2005) Enforced expression of PU.1 rescues osteoclastogenesis from embryonic stem cells lacking Tal-1. Stem Cells 23, 134–143.

    Article  PubMed  CAS  Google Scholar 

  14. Abe, E., Miyaura, C., Tanaka, H., Shiina, Y., Kuribayashi, T., Suda, S., et al. (1983) 1 alpha,25-dihydroxyvitamin D3 promotes fusion of mouse alveolar macrophages both by a direct mechanism and by a spleen cell-mediated indirect mechanism. Proc. Natl. Acad. Sci. USA 80, 5583–5587.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi, S., Miyamoto, A., Yamane, T., Kataoka, H., Ogawa, M., Sugawara, S., et al. (1997) Osteoclast precursors in bone marrow and peritoneal cavity. J. Cell. Physiol. 170, 241–247.

    Article  PubMed  CAS  Google Scholar 

  16. Yamazaki, H., Kunisada, T., Yamane, T., and Hayashi, S.I. (2001) Presence of osteoclast precursors in colonies cloned in the presence of hematopoietic colony-stimulating factors. Exp. Hematol. 29, 68–76.

    Article  PubMed  CAS  Google Scholar 

  17. Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., et al. (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J. Exp. Med. 190, 1741–1754.

    Article  PubMed  CAS  Google Scholar 

  18. Rivollier, A., Mazzorana, M., Tebib, J., Piperno, M., Aitsiselmi, T., Rabourdin-Combe, C., et al. (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029–4037.

    Article  PubMed  CAS  Google Scholar 

  19. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.

    Article  PubMed  CAS  Google Scholar 

  20. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., et al. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323.

    Article  PubMed  CAS  Google Scholar 

  21. Lagasse, E., and Weissman, I.L. (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  22. Li, J., Sarosi, I., Yan, X.Q., Morony, S., Capparelli, C., Tan, H.L., et al. (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi, K., Takahashi, N., Jimi, E., Udagawa, N., Takami, M., Kotake, S., et al. (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 191, 275–286.

    Article  PubMed  CAS  Google Scholar 

  24. Hayashi, S., Tsuneto, M., Yamada, T., Nose, M., Yoshino, M., Shultz, L.D., et al. (2004) Lipopolysaccharide-induced osteoclastogenesis in Src homology 2-domain phosphatase-1-deficient viable motheaten mice. Endocrinology 145, 2721–2729

    Article  PubMed  CAS  Google Scholar 

  25. Merkel, K.D., Erdmann, J.M., McHugh, K.P., Abu-Amer, Y., Ross, F.P., and Teitelbaum, S.L. (1999) Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am. J. Pathol. 154, 203–210.

    Article  PubMed  CAS  Google Scholar 

  26. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., et al. (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600–605.

    Article  PubMed  CAS  Google Scholar 

  27. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., et al. (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts. Dev. Cell 3, 889–901.

    Article  PubMed  CAS  Google Scholar 

  28. Yamane, T., Kunisada, T., Yamazaki, H., Era, T., Nakano, T., and Hayashi, S.I. (1997) Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c- kit dependent. Blood 90, 3516–3523.

    PubMed  CAS  Google Scholar 

  29. Kodama, H., Nose, M., Niida, S., and Yamasaki, A. (1991) Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J. Exp. Med. 173, 1291–1294.

    Article  PubMed  CAS  Google Scholar 

  30. Nishikawa, S., Ogawa, M., Nishikawa, S., Kunisada, T., Kodama, H. (1988) B lymphopoiesis on stromal cell clone: stromal cell clones acting on different stages of B cell differentiation. Eur. J. Immunol. 18, 1767–1771.

    Article  PubMed  CAS  Google Scholar 

  31. Udagawa, N., Takahashi, N., Akatsu, T., Sasaki, T., Yamaguchi, A., Kodama, H., et al. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125, 1805–1813.

    Article  PubMed  CAS  Google Scholar 

  32. Hemmi, H., Okuyama, H., Yamane, T., Nishikawa, S., Nakano, T., Yamazaki, H., et al. (2001) Temporal and spatial localization of osteoclasts in colonies from embryonic stem cells. Biochem. Biophys. Res. Commun. 280, 526–534.

    Article  PubMed  CAS  Google Scholar 

  33. Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W., Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  34. Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  35. Robertson, E., Bradley, A., Robertson, E.J., and Evans, M.J. (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448.

    Article  PubMed  CAS  Google Scholar 

  36. Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fritz Melchers (Max Planck Institute, Berlin) for critical reading of this manuscript. M. Tsuneto is a fellow of the Alexander von Humboldt Foundation in Germany. This work was supported by grants of a Grant-in-Aid for Scientific Research (C) (20590400) from JSPS, twenty-first Century COE Program from MEXT, and from JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motokazu Tsuneto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tsuneto, M., Yamane, T., Hayashi, SI. (2011). Methods for Investigation of Osteoclastogenesis Using Mouse Embryonic Stem Cells. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics