Skip to main content

PAP-LMPCR: An Improved, Sequence-Selective Method for the In Vivo Analysis of Transcription Factor Occupancy and Chromatin Fine Structure

  • Protocol
  • First Online:
Book cover PCR Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 687))

  • 6277 Accesses

Abstract

In vivo footprinting and ligation-mediated PCR (LMPCR) are well-established methods for the examination of the chromatin structure of eukaryotic genes. Here, we describe an improved method (pyrophosphorolysis activated polymerization LMPCR or PAP-LMPCR) that overcomes the shortfalls of previous methods by being capable of reading through sequences that up to now were refractory to this type of analysis. This includes dinucleotide repeat sequences or GC-rich regions. We also describe conditions capable of distinguishing between different alleles, thus enabling the simultaneous analysis of monoallelically expressed genes without having to employ interspecies hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montecino, M., Stein, J.L., Stein, G.S., Lian, J.B., van Wijnen, A.J., Cruzat, F., Gutierrez, S., Olate, J., Marcellini, S., and Gutierrez, J.L. (2007) Nucleosome organization and targeting of SWI/SNF chromatin-remodeling complexes: contributions of the DNA sequence. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 85, 419–25.

    Article  PubMed  CAS  Google Scholar 

  2. Racki, L.R. and Narlikar, G.J. (2008) ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Current Opinion in Genetics & Development 18, 137–44.

    Article  CAS  Google Scholar 

  3. Pfeifer, G.P. (2006) Measuring the formation and repair of DNA damage by ligation-­mediated PCR. Methods in Molecular Biology 314, 201–14.

    Article  PubMed  CAS  Google Scholar 

  4. Kontaraki, J., Chen, H.H., Riggs, A., and Bonifer, C. (2000) Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes & Development 14, 2106–22.

    CAS  Google Scholar 

  5. Tagoh, H., Himes, R., Clarke, D., Leenen, P.J., Riggs, A.D., Hume, D., and Bonifer, C. (2002) Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes & Development 16, 1721–37.

    Article  CAS  Google Scholar 

  6. Lefevre, P., Lacroix, C., Tagoh, H., Hoogenkamp, M., Melnik, S., Ingram, R., and Bonifer, C. (2005) Differentiation-dependent alterations in histone methylation and chromatin architecture at the inducible chicken lysozyme gene. The Journal of Biological Chemistry 280, 27552–60.

    Article  PubMed  CAS  Google Scholar 

  7. Tagoh, H., Cockerill, P.N., and Bonifer, C. (2006) In vivo genomic footprinting using LM-PCR methods. Methods in Molecular Biology 325, 285–314.

    PubMed  CAS  Google Scholar 

  8. Liu, Q. and Sommer, S.S. (2000) Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification. BioTechniques 29, 1072–76, 1078, 1080 passim.

    PubMed  CAS  Google Scholar 

  9. Liu, Q. and Sommer, S.S. (2004) PAP: detection of ultra rare mutations depends on P* oligonucleotides: “sleeping beauties” awakened by the kiss of pyrophosphorolysis. Human Mutation 23, 426–36.

    Article  PubMed  CAS  Google Scholar 

  10. Ingram, R., Gao, C., Lebon, J., Liu, Q., Mayoral, R.J., Sommer, S.S., Hoogenkamp, M., Riggs, A.D., and Bonifer, C. (2008) PAP-LMPCR for improved, allele-specific footprinting and automated chromatin fine structure analysis. Nucleic Acids Research 36, e19.

    Article  PubMed  CAS  Google Scholar 

  11. Liu, Q. and Sommer, S.S. (2004) Pyrophosphorolysis by type II DNA polymerases: implications for pyrophosphorolysis-activated polymerization. Analytical Biochemistry 324, 22–8.

    Article  PubMed  CAS  Google Scholar 

  12. Liu, Q. and Sommer, S.S. (2002) Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures. Nucleic Acids Research 30, 598–604.

    Article  PubMed  CAS  Google Scholar 

  13. Gardner, A.F. and Jack, W.E. (1999) Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Research 27, 2545–53.

    Article  PubMed  CAS  Google Scholar 

  14. Gardner, A.F. and Jack, W.E. (2002) Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Research 30, 605–13.

    Article  PubMed  CAS  Google Scholar 

  15. Ingram, R., Tagoh, H., Riggs, A.D., and Bonifer, C. (2005) Rapid, solid-phase based automated analysis of chromatin structure and transcription factor occupancy in living eukaryotic cells. Nucleic Acids Research 33, e1.

    Article  PubMed  Google Scholar 

  16. Pfeifer, G.P. and Dammann, R. (1999) Measuring the formation and repair of UV photoproducts by ligation-mediated PCR. Methods in Molecular Biology 113, 213–26.

    Article  PubMed  CAS  Google Scholar 

  17. Tagoh, H., Schebesta, A., Lefevre, P., Wilson, N., Hume, D., Busslinger, M., and Bonifer, C. (2004) Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO Journal 23, 4275–85.

    Article  PubMed  CAS  Google Scholar 

  18. Tagoh, H., Ingram, R., Wilson, N., Salvagiotto, G., Warren, A.J., Clarke, D., Busslinger, M., and Bonifer, C. (2006) The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO Journal 25, 1070–80.

    Article  PubMed  CAS  Google Scholar 

  19. Chakrabarti, R. and Schutt, C.E. (2001) The enhancement of PCR amplification by low molecular-weight sulfones. Gene 274, 293–8.

    Article  PubMed  CAS  Google Scholar 

  20. Mytelka, D.S. and Chamberlin, M.J. (1996) Analysis and suppression of DNA polymerase pauses associated with a trinucleotide consensus. Nucleic Acids Research 24, 2774–81.

    Article  PubMed  CAS  Google Scholar 

  21. Kovarova, M. and Draber, P. (2000) New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Research 28, E70.

    Article  PubMed  CAS  Google Scholar 

  22. Pheiffer, B.H. and Zimmerman, S.B. (1983) Polymer-stimulated ligation: enhanced blunt- or cohesive-end ligation of DNA or deoxyribooligonucleotides by T4 DNA ligase in polymer solutions. Nucleic Acids Research 11, 7853–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Ingram, R., Riggs, A., Bonifer, C. (2011). PAP-LMPCR: An Improved, Sequence-Selective Method for the In Vivo Analysis of Transcription Factor Occupancy and Chromatin Fine Structure. In: Park, D. (eds) PCR Protocols. Methods in Molecular Biology, vol 687. Humana Press. https://doi.org/10.1007/978-1-60761-944-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-944-4_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-943-7

  • Online ISBN: 978-1-60761-944-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics