Skip to main content

PET Imaging of αvβ3 Expression in Cancer Patients

  • Protocol
  • First Online:
Book cover Molecular Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 680))

Abstract

Imaging of αvβ3 expression in malignant diseases has been extensively studied in the last years, mainly because the level of integrin αvβ3 expression might be a surrogate parameter of angiogenic activity. Most studies have been performed using preclinical tumor models but recently first results if imaging αvβ3 expression in patients have been published. The first approach used was the radiotracer approach with tracers for positron emission tomography (PET) like [18F]Galacto-RGD or tracers for single photon emission computed tomography (SPECT) like [99mTc]NC100692. In this article we will focus on the experimental design and methodology of PET imaging of αvβ3 expression with the tracer [18F]Galacto-RGD. Common difficulties and pitfalls in image acquisition and interpretation will be discussed. Finally, the performance of PET will be compared to other methods of imaging of αvβ3 expression, like magnetic resonance imaging, ultrasound, or optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hood, J. D. and Cheresh, D. A. (2002) Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100.

    Article  PubMed  Google Scholar 

  2. Ruoslahti, E. (1996) RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715.

    Article  PubMed  CAS  Google Scholar 

  3. Xiong, J. P., Stehle, T., Zhang, R., et al. (2002) Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–5.

    Article  PubMed  CAS  Google Scholar 

  4. Cai, W. and Chen, X. (2006) Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anti-Cancer Agents Med. Chem. 6, 407–28.

    Article  CAS  Google Scholar 

  5. Hynes, R. O. (2002) A reevaluation of integrins as regulators of angiogenesis. Nat. Med. 8, 918–21.

    Article  PubMed  CAS  Google Scholar 

  6. Kerbel, R. S. (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312, 1171–5.

    Article  PubMed  CAS  Google Scholar 

  7. Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–42.

    Article  PubMed  CAS  Google Scholar 

  8. Ruoslahti, E. and Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491–7.

    Article  PubMed  CAS  Google Scholar 

  9. Haubner, R., Finsinger, D., and Kessler, H. (1997) Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew. Chem. Int. Ed. Engl. 36, 1374–89.

    Article  CAS  Google Scholar 

  10. Haubner, R., Wester, H. J., Reuning, U., et al. (1999) Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J. Nucl. Med. 40, 1061–71.

    PubMed  CAS  Google Scholar 

  11. Haubner, R., Kuhnast, B., Mang, C., Weber, W. A., Kessler, H., Wester, H. J., and Schwaiger, M. (2004, Jan-Feb) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug. Chem. 15(1), 61–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kenny, L. M., Coombes, R. C., Oulie, I., Contractor, K. B., Miller, M., Spinks, T. J., McParland., B., Cohen, P. S., Hui, A. M., Palmieri, C., Osman, S., Glaser, M., Turton, D., Al-Nahhas, A., and Aboagye, E. O. (2008, Jun) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J. Nucl. Med. 49(6), 879–86.

    Article  PubMed  Google Scholar 

  13. Glaser, M., Morrison, M., Solbakken, M., Arukwe, J., Karlsen, H., Wiggen, U., Champion, S., Kindberg, G. M., and Cuthbertson, A. (2008, Apr) Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. Bioconjug. Chem. 19(4), 951–7.

    Article  PubMed  CAS  Google Scholar 

  14. Beer, A. J., Haubner, R., Wolf, I., et al. (2006) PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging αvβ3 expression. J. Nucl. Med. 47, 763–9.

    PubMed  CAS  Google Scholar 

  15. Stangier, I., Wester, H. J., Schwaiger, M., and Beer, A. J. (2007) Comparison of standardised uptake values and distribution volume for imaging of αvβ3 expression in breast cancer patients with [18F]Galacto-RGD PET. J. Nucl. Med. 48(S2), 406 (abstract).

    Google Scholar 

  16. Carson, R. E. (2003) Tracer kinetic modelling in PET. In Positron emission tomography – basic science and clinical practice, Valk, P. E., Bailey, D. L., Townsend, D. W., and Maisey, M. N., (Eds.), 2nd ed. Springer, London, pp. 147–80.

    Google Scholar 

  17. Slifstein, M. and Laruelle, M. (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl. Med. Biol. 28, 595–608.

    Article  PubMed  CAS  Google Scholar 

  18. Spilker, M. E., Sprenger, T., Valet, M., Henriksen, G., Wagner, K., Wester, H. J., et al. (2004) Quantification of [18F]diprenorphine kinetics in the human brain with compartmental and non-compartmental modeling approaches. Neuroimage 22, 1523–33.

    Article  PubMed  Google Scholar 

  19. Beer, A. J., Haubner, R., Goebel, M., et al. (2005) Biodistribution and pharmacokinetics of the αvβ3 selective tracer 18F Galacto-RGD in cancer patients. J. Nucl. Med. 46, 1333–41.

    PubMed  CAS  Google Scholar 

  20. Schnell, O., Krebs, B., Wagner, E., Romagna, A., Beer, A. J., Grau, S. J., Thon, N., Goetz, C., Kretzschmar, H. A., Tonn, J. C., and Goldbrunner, R. H. (2008, Jul) Expression of integrin αvβ3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol. 18(3), 378–86.

    Article  PubMed  CAS  Google Scholar 

  21. Beer, A. J., Haubner, R., Sarbia, M., Goebel, M., Luderschmidt, S., Grosu, A. L., Schnell, O., Niemeyer, M., Kessler, H., Wester, H. J., Weber, W. A., and Schwaiger, M. (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expresssion in man. Clin. Cancer Res. 12, 3942–9.

    Article  PubMed  CAS  Google Scholar 

  22. Beer, A. J., Grosu, A. L., Carlsen, J., Kolk, A., Sarbia, M., Stangier, I., Watzlowik, P., Wester, H. J., Haubner, R., and Schwaiger, M. (2007, Nov 15) [18F]Galacto-RGD PET for imaging of αvβ3 expression on neovasculature in patients with squamous cell carcinoma of the head and neck. Clin. Cancer Res. 13(22 Pt 1), 6610–6.

    Article  PubMed  CAS  Google Scholar 

  23. Beer, A. J., Lorenzen, S., Metz, S., Herrmann, K., Watzlowik, P., Wester, H. J., Peschel, C., Lordick, F., and Schwaiger, M. (2008, Jan) Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J. Nucl. Med. 49(1), 22–9.

    Article  PubMed  Google Scholar 

  24. Beer, A. J. and Schwaiger, M. (2008, Jun 4) Imaging of integrin αvβ3 expression. Cancer Metastasis Rev. 27, 631–44.

    Article  PubMed  CAS  Google Scholar 

  25. Makowski, M. R., Ebersberger, U., Nekolla, S., and Schwaiger, M. (2008, Mar 27) In vivo molecular imaging of angiogenesis, targeting αvβ3 integrin expression, in a patient after acute myocardial infarction. Eur. Heart J. 29, 2201.

    Article  PubMed  Google Scholar 

  26. Haubner, R., Weber, W. A., Beer, A. J., Vabuliene, E., Reim, D., Sarbia, M., Becker, K. F., Goebel, M., Hein, R., Wester, H. J., Kessler, H., and Schwaiger, M. (2005, Mar) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2(3), e70.

    Article  PubMed  Google Scholar 

  27. Pichler, B. J., Kneilling, M., Haubner, R., Braumüller, H., Schwaiger, M., Röcken, M., and Weber, W. A. (2005, Jan) Imaging of delayed-type hypersensitivity reaction by PET and 18F-galacto-RGD. J. Nucl. Med. 46(1), 184–9.

    PubMed  Google Scholar 

  28. Bach-Gansmo, T., Danielsson, R., Saracco, A., Wilczek, B., Bogsrud, T. V., Fangberget, A., Tangerud, A., and Tobin, D. (2006, Sep) Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J. Nucl. Med. 47(9), 1434–9.

    PubMed  CAS  Google Scholar 

  29. Weber, W. A. (2006) Positron emission tomography as an imaging biomarker. J. Clin. Oncol. 24(20), 3282–92.

    Article  PubMed  CAS  Google Scholar 

  30. Buck, A. K., Nekolla, S., Ziegler, S., Beer, A., Krause, B. J., Herrmann, K., Scheidhauer, K., Wester, H. J., Rummeny, E. J., Schwaiger, M., and Drzezga, A. (2008, Aug) Spect/Ct. J. Nucl. Med. 49(8), 1305–19.

    Article  PubMed  Google Scholar 

  31. Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., and Li, K. C. (1998) Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat. Med. 4, 623–6.

    Article  PubMed  CAS  Google Scholar 

  32. Winter, P. M., Caruthers, S. D., Kassner, A., et al. (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 63, 5838–43.

    PubMed  CAS  Google Scholar 

  33. Schmieder, A. H., Winter, P. M., Caruthers, S. D., et al. (2005) Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magn. Reson. Med. 53, 621–7.

    Article  PubMed  CAS  Google Scholar 

  34. Thorek, D. L., Chen, A. K., Czupryna, J., and Tsourkas, A. (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 34, 23–38.

    Article  PubMed  Google Scholar 

  35. Zhang, C., Jugold, M., Woenne, E. C., et al. (2007) Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res. 67, 1555–62.

    Article  PubMed  CAS  Google Scholar 

  36. Spuentrup, E. and Botnar, R. M. (2006) Coronary magnetic resonance imaging: visualization of vessel lumen and the vessel wall and molecular imaging of arteriotrombosis. Eur. Radiol. 16, 1–14.

    Article  PubMed  Google Scholar 

  37. Jaffer, F. A. and Weissleder, R. (2004) Seeing within: molecular imaging of the cardiovascular system. Circ. Res. 94, 433–45.

    Article  PubMed  CAS  Google Scholar 

  38. Ellegala, D. B., Leong-Poi, H., Carpenter, J. E., et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation 108, 336–41.

    Article  PubMed  Google Scholar 

  39. Kumar, C. C., Nie, H., Rogers, C. P., et al. (1997) Biochemical characterization of the binding of echistatin to integrin αvβ3 receptor. J. Pharmacol. Exp. Ther. 283, 843–53.

    PubMed  CAS  Google Scholar 

  40. Hughes, M. S., Marsh, J. N., Zhang, H., et al. (2006) Characterization of digital waveforms using thermodynamic analogs: detection of contrast-targeted tissue in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1609–16.

    Article  PubMed  Google Scholar 

  41. Marsh, J. N., Partlow, K. C., Abendschein, D. R., Scott, M. J., Lanza, G. M., and Wickline, S. A. (2007) Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med. Biol. 33(6), 950–8.

    Article  PubMed  Google Scholar 

  42. Bloch, S. H., Dayton, P. A., and Ferrara, K. W. (2004) Targeted imaging using ultrasound contrast agents. Progess and opportunities for clinical and research applications. IEEE Eng. Med. Biol. Mag. 23, 18–29.

    Article  PubMed  Google Scholar 

  43. Bremer, C., Bredow, S., Mahmood, U., et al. (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221, 523–9.

    Article  PubMed  CAS  Google Scholar 

  44. Chen, X., Conti, P. S., and Moats, R. A. (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res. 64(21), 8009–14.

    Article  PubMed  CAS  Google Scholar 

  45. Jin, Z. H., Josserand, V., Foillard, S., Boturyn, D., Dumy, P., Favrot, M. C., and Coll, J. L. (2007) In vivo optical imaging of integrin αvβ3 in mice using multivalent or monovalent cRGD targeting vectors. Mol. Cancer 6, 41.

    Article  PubMed  Google Scholar 

  46. von Wallbrunn, A., Holtke, C., Zuhlsdorf, M., Heindel, W., Schafers, M., and Bremer, C. (2007) In vivo imaging of integrin αvβ3 expression using fluorescence-mediated tomography. Eur. J. Nucl. Med. Mol. Imaging 34(5), 745–54 (Epub 2006 Nov 28).

    Article  Google Scholar 

  47. Jaffer, F. A. and Weissleder, R. (2005) Molecular imaging in the clinical arena. JAMA 293, 855–62.

    Article  PubMed  CAS  Google Scholar 

  48. Chen, X., Tohme, M., Park, R., Hou, Y., Bading, J. R., and Conti, P. S. (2004) Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol. Imaging 3, 96–104.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, X., Xiong, Z., Wu, X., et al. (2006) Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J. Nucl. Med. 47, 113–21.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambros J. Beer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Beer, A.J., Schwaiger, M. (2011). PET Imaging of αvβ3 Expression in Cancer Patients. In: Shah, K. (eds) Molecular Imaging. Methods in Molecular Biology, vol 680. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-901-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-901-7_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-900-0

  • Online ISBN: 978-1-60761-901-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics