Skip to main content

Female Gametophytic Mutants: Diagnosis and Characterization

  • Protocol
  • First Online:
Book cover Plant Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 655))

Abstract

In plants, gametes are formed in multicellular haploid structures, termed gametophytes. The female gametophyte of most higher plants comprises seven cells, which develop from a single haploid spore through nuclear proliferation and subsequent cellularization. The female gametophytic cells differentiate into four distinct cell types, which play specific roles during fertilization and seed formation thereby ensuring reproductive success. In recent years many new techniques and cell type-specific marker lines have been established, making the female gametophyte an attractive system to study mechanisms of reproduction as well as cell specification. The following chapter describes a basic protocol for, first of all, recognizing a female gametophytic mutant and subsequently analyzing the phenotype on a morphological, molecular, and functional level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boisson-Dernier, A., Frietsch, S., Kim, T., Dizon, M. B., and Schroeder, J. I. (2008) The Peroxin Loss-of-Function Mutation abstinence by mutual consent Disrupts Male-Female Gametophyte Recognition. Curr Biol 18, 63–68.

    Article  PubMed  CAS  Google Scholar 

  2. Capron, A., Gourgues, M., Neiva, L. S., Faure, J., Berger, F., Pagnussat, G., Krishnan, A., Alvarez-Mejia, C., Vielle-Calzada, J. P., Lee, Y. R., Liu, B., and Sundaresan, V. (2008) Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI Gene. Plant Cell 20, 3038–3049.

    Article  PubMed  CAS  Google Scholar 

  3. Christensen, C. A., King, E. J., Jordan, J. R., and Drews, G. N. (1997) Megagametogenesis in Arabidopsis wild type and the gf mutant. Sex Plant Reprod 10, 49–64.

    Article  Google Scholar 

  4. Gross-Hardt, R., Kägi, C., Baumann, N., Moore, J. M., Baskar, R., Gagliano, W. B., Jürgens, G., and Grossniklaus, U. (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5, e47

    Article  PubMed  Google Scholar 

  5. Howden, R., Park, S. K., Moore, J. M., Orme, J., Grossniklaus, U., and Twell, D. (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149, 621–631.

    PubMed  CAS  Google Scholar 

  6. Huck, N., Moore, J. M., Federer, M., and Grossniklaus, U. (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130, 2149–2159.

    Article  PubMed  CAS  Google Scholar 

  7. Ingouff, M., Hamamura, Y., Gourgues, M., Higashiyama, T., and Berger, F. (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17, 1032–1037

    Article  PubMed  CAS  Google Scholar 

  8. Ingouff, M., Jullien, P. E., and Berger, F. (2006) The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18, 3491–3501.

    Article  PubMed  CAS  Google Scholar 

  9. Joshua, G., Steffen, J. G., Kang, I., Macfarlane, J., and Drews, G. N. (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51, 281–292.

    Article  Google Scholar 

  10. Kägi, C. and Groß-Hardt, R. (2007) How females become complex: Cell differentiation in the gametophyte. Curr Opin Plant Biol 10, 633–638.

    Article  PubMed  Google Scholar 

  11. Luo, M., Bilodeau, P., Dennis, E. S., Peacock, W. J., and Chaudhury, A. (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad USA 12, 10637–10642.

    Google Scholar 

  12. Moll, C., von Lyncker, L., Zimmermann, S., Kägi, C., Baumann, N., Twell, Grossniklaus, U., and Gross-Hardt R. (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56, 913–921.

    Article  PubMed  CAS  Google Scholar 

  13. Nowack, M. K., Grini, P. E., Jakoby, M. J., Lafos, M., Koncz, C., and Schnittger, A. (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38, 63–67.

    Article  PubMed  CAS  Google Scholar 

  14. Page, D. R. and Grossniklaus, U. (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3,124–136.

    Article  PubMed  CAS  Google Scholar 

  15. Pagnussat, G. C., Yu, H., and Sundaresan, V. (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19, 3578–3592.

    Article  PubMed  CAS  Google Scholar 

  16. Pagnussat, G. C., Yu, H., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., Capron, A., Xie, L. F., Ye, D., and Sundaresan, V. (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603–614.

    Article  PubMed  CAS  Google Scholar 

  17. Portereiko, M. F., Lloyd, A., Steffen, J. G., Punwani, J. A., Otsuga, D., and Drews G. N (2006) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18, 1862–1872.

    Article  PubMed  CAS  Google Scholar 

  18. Sandaklie-Nikolova, L., Palanivelu, R., King, E. J., Copenhaver, G. P., and Drews, G. N. (2007) Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol 144, 1753–1762.

    Article  PubMed  CAS  Google Scholar 

  19. Steffen, J. G., Kang, I. H., Portereiko, M. F., Lloyd, A., and Drews, G. N. (2008) AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148, 259–268.

    Article  PubMed  CAS  Google Scholar 

  20. Yadegari, R. and Drews, G. N. (2004) Female gametophyte development. Plant Cell 16, 133–141.

    Article  Google Scholar 

  21. Yadegari, R., Paiva, G., Laux, T., Koltunow, A. M., Apuya, N., Zimmerman, J. L., Fischer, R. L, Harada, J. J., and Goldberg, R. B. (1994) Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6, 1713–1729.

    PubMed  CAS  Google Scholar 

  22. Yu, H. J., Hogan, P., and Sundaresan, V. (2005) Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139, 1853–1869.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. de Courcy and members of the Gross-Hardt laboratory for critical reading of the manuscript. Work in the Gross-Hardt laboratory is supported by grants from the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Völz, R., Groß-Hardt, R. (2010). Female Gametophytic Mutants: Diagnosis and Characterization. In: Hennig, L., Köhler, C. (eds) Plant Developmental Biology. Methods in Molecular Biology, vol 655. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-765-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-765-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-764-8

  • Online ISBN: 978-1-60761-765-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics