Skip to main content

Production of Recombinant Antimicrobial Peptides in Bacteria

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 618))

Abstract

Large quantities of antimicrobial peptides are required for investigations and clinical trials, therefore suitable production method alternative to traditional chemical synthesis is necessary. Production of recombinant antimicrobial peptides in prokaryotic systems has successfully demonstrated the viability of this approach. Production of antimicrobial peptides in Escherichia coli is potentially limited due to their toxicity to host cells and susceptibility to proteolytic degradation, which can be avoided using fusion protein approach. We describe antimicrobial peptide production in E. coli based on forcing antimicrobial peptides into inclusion bodies, which is affective for the production of large quantities of antimicrobial peptides. Chemical reagents for cleaving peptide bond between antimicrobial peptides and fusion proteins such as cyanogen bromide and diluted acid are selective and provide antimicrobial peptides for biological studies in short time.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hara, S. and Yamakawa, M. (1996) Production in Escherichia coli of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 220, 664–669.

    Article  PubMed  Google Scholar 

  2. Shen, Y., Lao, X. G., Chen, Y., Zhang, H. Z., and Xu, X. X. (2007) High-level expression of cecropin X in Escherichia coli. Int. J. Mol. Sci. 8, 478–491.

    Google Scholar 

  3. Cipakova, I., Gasperik, J., and Hostinova, E. (2006) Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr. Purif. 45, 269–274.

    Article  PubMed  Google Scholar 

  4. Kim, H. K., Chun, D. S., Kim, J. S., Yun, C. H., Lee, J. H., Hong, S. K., and Kang, D. K. (2006) Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Appl. Microbiol. Biotechnol. 72, 330–338.

    PubMed  Google Scholar 

  5. Ingham, A. B. and Moore, R. J. (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechol. Appl. Biochem. 47, 1–9.

    Google Scholar 

  6. Xu, Z. N., Peng, L., Zhong, Z. X., Fang, X. M., and Cen, P. L. (2006) High-level expression of a soluble functional antimicrobial peptide, human beta-defensin 2, in Escherichia coli. Biotechnol. Progress. 22, 382–386.

    Article  Google Scholar 

  7. Majerle, A., Kidric, J., and Jerala, R. (2000) Production of stable isotope enriched antimicrobial peptides in Escherichia coli: an application to the production of a N-15-enriched fragment of lactoferrin. J. Biomol. Nmr. 18, 145–151.

    Article  PubMed  Google Scholar 

  8. Wei, Q. D., Kim, Y. S., Seo, J. H., Jang, W. S., Lee, I. H., and Cha, H. J. (2005) Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microb. 71, 5038–5043.

    Google Scholar 

  9. Hwang, S. W., Lee, J. H., Park, H. B., Pyo, S. H., So, J. E., Lee, H. S., Hong, S. S., and Kim, J. H. (2001) A simple method for the purification of an antimicrobial peptide in recombinant Escherichia coli. Mol. Biotechnol. 18, 193–198.

    Article  PubMed  Google Scholar 

  10. Lee, J. H., Kim, J. H., Hwang, S. W., Lee, W. J., Yoon, H. K., Lee, H. S., and Hong, S. S. (2000) High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun. 277, 575–580.

    PubMed  Google Scholar 

  11. Reichhart, J. M., Petit, I., Legrain, M., Dimarcq, J. L., Keppi, E., Lecocq, J. P., Hoffmann, J. A., and Achstetter, T. (1992) Expression and secretion in yeast of active insect defensin, an inducible antibacterial peptide from the fleshfly phormia-terraenovae. Invertebr. Reprod. Dev. 21, 15–24.

    Article  Google Scholar 

  12. Andersons, D., Engstrom, A., Josephson, S., Hansson, L., and Steiner, H. (1991) Biologically-active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein-A. A. Biochem. J. 280, 219–224.

    Google Scholar 

  13. Rao, X. C., Li, S., Hu, J. C., Jin, X. L., Hu, X. M., Huang, J. J., Chen, Z. J., Zhu, J. M., and Hu, F. Q. (2004) A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr. Purif. 36, 11–18.

    Article  PubMed  Google Scholar 

  14. Moon, J. Y., Henzler-Wildman, K. A., and Ramamoorthy, A. (2006) Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim. Biophys. Acta. 1758, 1351–1358.

    PubMed  Google Scholar 

  15. Zorko, M., Japelj, B., Hafner-Bratkovic, I., and Jerala, R. (2009) Expression, purification and structural studies of a short antimicrobial peptide. Biochim. Biophys. Acta 1788, 314–323.

    PubMed  Google Scholar 

  16. Jonasson, P., Liljeqvist, S., Nygren, P. A., and Stahl, S. (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechol. Appl. Biochem. 35, 91–105.

    Google Scholar 

  17. Kuliopulos, A. and Walsh, C. T. (1994) Production, purification, and cleavage of tandem repeats of recombinant peptides. J. Am. Chem. Soc. 116, 4599–4607.

    Article  Google Scholar 

  18. Lee, J. H., Skowron, P. M., Rutkowska, S. M., Hong, S. S., and Kim, S. C. (1996) Sequential amplification of cloned DNA as tandem multimers using class-IIS restriction enzymes. Genetic Anal. Biomol. Eng. 13, 139–145.

    Google Scholar 

  19. Gaussier, H., Morency, H., Lavoie, M. C., and Subirade, M. (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl. Environ. Microb. 68, 4803–4808.

    Article  Google Scholar 

  20. Kohno, T., Kusunoki, H., Sato, K., and Wakamatsu, K. (1998) A new general method for the biosynthesis of stable isotope-enriched peptides using a decahistidine-tagged ubiquitin fusion system: an application to the production of mastoparan-X uniformly enriched with N-15 and N-15/C-13. J. Biomol. Nmr. 12, 109–121.

    Article  PubMed  Google Scholar 

  21. Haught, C., Davis, G. D., Subramanian, R., Jackson, K. W., and Harrison, R. G. (1998) Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol. Bioeng. 57, 55–61.

    Article  PubMed  Google Scholar 

  22. Skosyrev, V. S., Rudenko, N. V., Yakhnin, A. V., Zagranichny, V. E., Popova, L. I., Zakharov, M. V., Gorokhovatsky, A. Y., and Vinokurov, L. M. (2003) EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expr. Purif. 27, 55–62.

    Article  PubMed  Google Scholar 

  23. Fassina, G., Merli, S., Germani, S., Ciliberto, G., and Cassani, G. (1994) High-yield expression and purification of human endothelin-1. Protein Expr. Purif. 5, 559–568.

    Article  PubMed  Google Scholar 

  24. Xu, X. X., Jin, F. L., Yu, X. Q., Ji, S. X., Wang, J., Cheng, H. X., Wang, C., and Zhang, W. Q. (2007) Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. Protein Expr. Purif. 53, 293–301.

    Article  PubMed  Google Scholar 

  25. Morassutti, C., De Amicis, F., Bandiera, A., and Marchetti, S. (2005) Expression of SMAP-29 cathelicidin-like peptide in bacterial cells by intein-mediated system. Protein Expr. Purif. 39, 160–168.

    Article  PubMed  Google Scholar 

  26. Wei, Q. D., Kim, Y. S., Seo, J. H., and Cha, H. J. (2005) Facilitation of expression and purification of antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microbiol. 71, 5038–5043.

    Article  PubMed  CAS  Google Scholar 

  27. Moon, W. J., Hwang, D. K., Park, E. J., Kim, Y. M., and Chae, Y. K. (2007) Recombinant expression, isotope labeling, refolding, and purification of an antimicrobial peptide, piscidin. Protein Expr. Purif. 51, 141–146.

    Article  PubMed  Google Scholar 

  28. Tang, H. Y. and Speicher, D. W. (2004) Identification of alternative products and optimization of 2-nitro-5-thiocyanatobenzoic acid cyanylation and cleavage at cysteine residues. Anal. Biochem. 334, 48–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zorko, M., Jerala, R. (2010). Production of Recombinant Antimicrobial Peptides in Bacteria. In: Giuliani, A., Rinaldi, A. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 618. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-594-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-594-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-593-4

  • Online ISBN: 978-1-60761-594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics