Skip to main content

Applying an Adaptive Watershed to the Tissue Cell Quantification During T-Cell Migration and Embryonic Development

  • Protocol
  • First Online:
T-Cell Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 616))

Abstract

Cell and particle quantification is one of the frequently used techniques in biology and clinical study. Variations of cell/particle population and/or protein expression level can provide information on many biological processes. In this chapter, we propose an image-based automatic quantification approach that can be applied to images from both fluorescence and electron microscopy. The algorithm uses local maxima to identify labelling targets and uses watershed segmentation to define their boundaries. The method is able to provide information on size, intensity centroids and average intensity within the labelling partitions. Further developed from this method, we demonstrated its applications in four different research projects, including recruitment enumeration of circulating T cell in non-lymphoid tissues, cell clustering in the early development of the chick embryo, gold particle localization and clustering in electron microscopy, and registration/co-localization of transcription factors in neural tube development of early chick embryo. The advantages and limitations of the method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aune MW, Sandberg S. (2000) Automated counting of white and red blood cells in the cerebrospinal fluid. Clin Lab Hematol 22, 203–10.

    Article  CAS  Google Scholar 

  2. Sims AJ, Bennett MK, Murray A. (2002) Comparison of semi-automated image analysis and manual methods for tissue quantification in pancreatic carcinoma. Phys Med Biol 47, 1255–66.

    Article  PubMed  CAS  Google Scholar 

  3. Agarwal A, Sharma RK. (2007) Automation is the key to standardized semen analysis using the automated SQA-V sperm quality analyzer. Fertil Steril 87, 156–62.

    Article  PubMed  Google Scholar 

  4. Barthmaier P. (2003) Microfluidic technology applied to protein sizing and quantization. Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show 1, 67–9.

    Google Scholar 

  5. Li X, Tibbe AGJ, Droog E, Terstappen LWMM, Greve J. (2007) An immunomagnetic single-platform image cytometer for cell enumeration based on antibody specificity. Clin Vaccine Immunol 14, 412–9.

    Article  PubMed  CAS  Google Scholar 

  6. Benali A, Leefken I, Eysel UT, Weiler E. (2003) A computerized image analysis system for quantitative analysis of cells in histological brain sections. J Neurosci Methods 125, 33–43.

    Article  PubMed  Google Scholar 

  7. Steinera GE, Eckera RC, Kramera G, Stockenhuber F, Marberger MJ. (2000) Automated data acquisition by confocal laser scanning microscopy and image analysis of triple stained immunofluorescent leukocytes in tissue. J Immunol Methods 237, 39–50.

    Article  Google Scholar 

  8. Wahlby C, Sintor IM, Erlandsson NF, Borgefors G, Bengtsson E. (2004) Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 215, 67–76.

    Article  PubMed  CAS  Google Scholar 

  9. Oritiz de Solorzano C, Garcia Rodriguez E, Jones A, Pinkel D, Gray J, Sudar D, Lockett S. (1999) Segmentation of confocal microscope images of cell nuclei in thick tissue sections. J Microsc 193, 212–26.

    Article  Google Scholar 

  10. Canny J. (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8, 679–98.

    Article  Google Scholar 

  11. Adams R, Bischof L. (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16, 641–47.

    Article  Google Scholar 

  12. Meyer F, Beucher S. (1990) Morphological segmentation. J Vis Commun Image Represent 1, 21–46.

    Article  Google Scholar 

  13. Chalana V, Winter TC III, Cyr DR, Haynor DR, Kim Y. (1996) Automatic fetal head measurements from sonographic images. Acad Radiol 3, 628–35.

    Article  PubMed  CAS  Google Scholar 

  14. Cosıo FA, Flores JAM, Castaneda MAP, Solano S, Tato P. (2005) Automatic analysis of immunocytochemically stained tissue samples. Med Biol Eng Comput 43, 672–77.

    Article  Google Scholar 

  15. Mat-Isa NA, Mashor MY, Othman NH. (2005) Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer. Int J Comput Internet Manage 13, 61–70.

    Google Scholar 

  16. Shimada T, Katoa K, Kamikouchi A, Itoa K. (2005) Analysis of the distribution of the brain cells of the fruit fly by an automatic cell counting algorithm. Physica A 350, 144–9.

    Article  Google Scholar 

  17. Bernard R, Kanduser M, Pernu F. (2001) Model-based automated detection of mammalian cell colonies. Phys Med Biol 46, 3061–72.

    Article  PubMed  CAS  Google Scholar 

  18. Forero MG, Cristobal G, Desco M. (2006) Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. J Microsc 223, 120–32.

    Article  PubMed  CAS  Google Scholar 

  19. Shorte SL, Frischknecht F. (2007) Imaging Cellular and Molecular Biological Functions. Berlin, Heidelberg: Springer-Verlag, 407–21.

    Book  Google Scholar 

  20. Vincent L, Soille P. (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 3, 583–98.

    Article  Google Scholar 

  21. Roerdink JBTM, Meijster A. (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Informaticae 41, 187–228.

    Google Scholar 

  22. Mirenda V, Jarmin SJ, David R, Dyson J, Scott D, Yan Gu Y, Lechler RI, Okkenhaug K, Marelli-Berg FM. (2007) Physiologic and aberrant regulation of memory T-cell trafficking by the costimulatory molecule CD28. Blood 109, 2968–77.

    PubMed  CAS  Google Scholar 

  23. James MJ, Belaramani L, Prodromidou K, Datta A, Nourshargh S, Lombardi G, Dyson J, Scott D, Simpson E, Cardozo L, Warrens A, Szydlo RM, Lechler RI, Marelli-Berg FM. (2003) Anergic T cells exert antigen-independent inhibition of cell–cell interactions via chemokine metabolism. Blood 102, 2173–9.

    Article  PubMed  CAS  Google Scholar 

  24. Itasaki N, Bel-Vialar S, Krumlauf R. (1999) ‘Shocking’ developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1, E203–7.

    Article  PubMed  CAS  Google Scholar 

  25. Xie SQ, Pombo A. (2006) Distribution of different phosphorylated forms of RNA polymerase II in relation to Cajal and PML bodies in human cells: an ultrastructural study. Histochem Cell Biol 125, 21–31.

    Article  PubMed  CAS  Google Scholar 

  26. Hamburger V, Hamilton HL. (1951) A series of normal stages in the development of the chick embryo. J Morphol 88, 49–92.

    Article  Google Scholar 

  27. Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J. (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–80.

    Article  PubMed  CAS  Google Scholar 

  28. Novitch BG, Chen AI, Jessell TM. (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–89.

    Article  PubMed  CAS  Google Scholar 

  29. Serpente P, Tumpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dolle P, Chambon P, Krumlauf R, Gould AP. (2005) Direct crossregulation between retinoic acid receptor band Hox genes during hindbrain segmentation. Development 132, 503–13.

    Article  PubMed  CAS  Google Scholar 

  30. Sanchez-Marin FJ. (1999) Automatic segmentation of contours of corneal cells. Comput Biol Med 29, 243–58.

    Article  PubMed  CAS  Google Scholar 

  31. Thomann D, Rines DR, Sorger PK, Danuser G. (2002) Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. J Microsc 208, 49–64.

    Article  PubMed  CAS  Google Scholar 

  32. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch BG, Briscoe J. (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–21.

    Article  PubMed  CAS  Google Scholar 

  33. Jarmin SJ, David R, Ma L, Chai J, Dewchand H, Takesono A, Ridley AJ, Okkenhaug K, Marelli-Berg FM. (2008) T cell receptor-induced phosphoinositide-3-kinase p110δ activity is required for T cell localization to antigenic tissue in mice. J Clin Invest 118, 1154–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, D. et al. (2010). Applying an Adaptive Watershed to the Tissue Cell Quantification During T-Cell Migration and Embryonic Development. In: Marelli-Berg, F., Nourshargh, S. (eds) T-Cell Trafficking. Methods in Molecular Biology, vol 616. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-461-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-461-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-460-9

  • Online ISBN: 978-1-60761-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics