Skip to main content

Glycoprotein Characterization

  • Protocol
  • First Online:
Book cover Functional Glycomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 600))

Abstract

Increasing numbers of studies are reporting the modification of prokaryotic proteins with novel glycans. These proteins are often associated with virulence factors of medically important pathogens. Herein, we describe the steps required to characterize prokaryotic glycoproteins by mass spectrometry, using flagellin isolated from Clostridium botulinum strain Langeland as an example. Both “top-down” and “bottom-up” approaches will be described for characterizing the purified glycoprotein at the whole protein and peptide levels. The preliminary steps toward structural characterization of novel prokaryotic glycans by mass spectrometry and NMR are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apweiler, R., Hermjakob, H., and Sharon, N. (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8.

    CAS  PubMed  Google Scholar 

  2. Drickamer, K. and Taylor, M. E. (1998) Evolving views of protein glycosylation. Trends Biochem. Sci. 23, 321–324.

    Article  CAS  PubMed  Google Scholar 

  3. Varki, A. (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845.

    Article  CAS  PubMed  Google Scholar 

  4. Varki, N. M. and Varki, A. (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. Invest. 87, 851–857.

    Article  CAS  PubMed  Google Scholar 

  5. Messner, P. (2004) Prokaryotic glycoproteins: unexplored but important. J. Bacteriol. 186, 2517–2519.

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt, M. A., Riley, L. W., and Benz, I. (2003) Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol. 11, 554–561.

    Article  CAS  PubMed  Google Scholar 

  7. Logan, S. M. (2006) Flagellar glycosylation – a new component of the motility repertoire? Microbiology 152, 1249–1262.

    Article  CAS  PubMed  Google Scholar 

  8. Szymanski, C. M., Logan, S. M., Linton, D., and Wren, B. W. (2003) Campylobacter – a tale of two protein glycosylation systems. Trends Microbiol. 11, 233–238.

    CAS  PubMed  Google Scholar 

  9. Schaffer, C. and Messner, P. (2001) Glycobiology of surface layer proteins. Biochimie 83, 591–599.

    Article  CAS  PubMed  Google Scholar 

  10. Castric, P., Cassels, F. J., and Carlson, R. W. (2001) Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276, 26479–26485.

    Article  CAS  PubMed  Google Scholar 

  11. Hegge, F. T., Hitchen, P. G., Aas, F. E., Kristiansen, H., Lovold, C., Egge-Jacobsen, W., Panico, M., Leong, W. Y., Bull, V., Virji, M., Morris, H. R., Dell, A., and Koomey, M. (2004) Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc. Natl. Acad. Sci. U. S. A 101, 10798–10803.

    Article  CAS  PubMed  Google Scholar 

  12. Stimson, E., Virji, M., Makepeace, K., Dell, A., Morris, H. R., Payne, G., Saunders, J. -R., Jennings, M. P., Barker, S., Panico, M. et al. (1995) Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17, 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  13. Schirm, M., Soo, E. C., Aubry, A. J., Austin, J., Thibault, P., and Logan, S. M. (2003) Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48, 1579–1592.

    Article  CAS  PubMed  Google Scholar 

  14. Guerry, P., Ewing, C. P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., Majam, G., Thibault, P., and Logan, S. (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60, 299–311.

    Article  CAS  PubMed  Google Scholar 

  15. Schirm, M., Schoenhofen, I. C., Logan, S. M., Waldron, K. C., and Thibault, P. (2005) Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal. Chem. 77, 7774–7782.

    Article  CAS  PubMed  Google Scholar 

  16. Schirm, M., Kalmokoff, M., Aubry, A., Thibault, P., Sandoz, M., and Logan, S. M. (2004) Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. J. Bacteriol. 186, 6721–6727.

    Article  CAS  PubMed  Google Scholar 

  17. Schirm, M., Arora, S. K., Verma, A., Vinogradov, E., Thibault, P., Ramphal, R., and Logan, S. M. (2004) Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa. J. Bacteriol. 186, 2523–2531.

    Article  CAS  PubMed  Google Scholar 

  18. Verma, A., Schirm, M., Arora, S. K., Thibault, P., Logan, S. M., and Ramphal, R. (2006) Glycosylation of b-Type flagellin of Pseudomonas aeruginosa: structural and genetic basis. J. Bacteriol. 188, 4395–4403.

    Article  CAS  PubMed  Google Scholar 

  19. Thibault, P., Logan, S. M., Kelly, J. F., Brisson, J. -R., Ewing, C. P., Trust, T. J., and Guerry, P. (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870.

    Article  CAS  PubMed  Google Scholar 

  20. Chaban, B., Voisin, S., Kelly, J., Logan, S. M., and Jarrell, K. F. (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 61, 259–268.

    Article  CAS  PubMed  Google Scholar 

  21. Voisin, S., Houliston, R. S., Kelly, J., Brisson, J. -R., Watson, D., Bardy, S. L., Jarrell, K. F., and Logan, S. M. (2005) Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280, 16586–16593.

    Article  CAS  PubMed  Google Scholar 

  22. Voisin, S., Kus, J. V., Houliston, S., St-Michael, F., Watson, D., Cvitkovitch, D. G., Kelly, J., Brisson, J. -R., and Burrows, L. L. (2007) Glycosylation of Pseudomonas aeruginosa strain Pa5196 type IV pilins with mycobacterium-like alpha-1,5-linked d-Araf oligosaccharides. J. Bacteriol. 189, 151–159.

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee, A. and Ghosh, S. K. (2003) The role of pilin glycan in neisserial pathogenesis. Mol. Cell Biochem. 253, 179–190.

    Article  CAS  PubMed  Google Scholar 

  24. Paul, C. J., Twine, S. M., Tam, K. J., Mullen, J. A., Kelly, J. F., Austin, J. W., and Logan, S. M. (2007) Flagellin diversity in Clostridium botulinum groups I and II: a new strategy for strain identification. Appl. Environ. Microbiol. 73, 2963–2975.

    Article  CAS  PubMed  Google Scholar 

  25. Twine, S. M., Paul, C. J., Vinogradov, E., McNally, D. J., Brisson, J. -R., Mullen, J. A., McMullin, D. R., Jarrell, H. C., Austin, J. W., Kelly, J. F., and Logan, S. M. (2008) Flagellar glycosylation in Clostridium botulinum. FEBS J. 275, 4428–4444.

    Article  CAS  PubMed  Google Scholar 

  26. Shevchenko, A., Chernushevich, I., Wilm, M., and Mann, M. (2000) De Novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments. Methods Mol. Biol. 146, 1–16.

    CAS  PubMed  Google Scholar 

  27. Rademaker, G. J., Pergantis, S. A., Blok-Tip, L., Langridge, J. I., Kleen, A., and Thomas-Oates, J. E. (1998) Mass spectrometric determination of the sites of O-glycan attachment with low picomolar sensitivity. Anal. Biochem. 257, 149–160.

    Article  CAS  PubMed  Google Scholar 

  28. Coon, J. J., Shabanowitz, J., Hunt, D. F., and Syka, J. E. (2005) Electron transfer dissociation of peptide anions. J. Am. Soc. Mass Spectrom. 16, 880–882.

    Article  CAS  PubMed  Google Scholar 

  29. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., and Hunt, D. F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A 101, 9528–9533.

    Article  CAS  PubMed  Google Scholar 

  30. Rademaker, G. J., Pergantis, S. A., Blok-Tip, L., Langridge, J. I., Kleen, A., and Thomas-Oates, J. E. (1998) Mass spectrometric determination of the sites of O-glycan attachment with low picomolar sensitivity. Anal. Biochem. 257, 149–160.

    Article  CAS  PubMed  Google Scholar 

  31. Kowarik, M., Young, N. M., Numao, S., Schulz, B. L., Hug, I., Callewaert, N., Mills, D. C., Watson, D. C., Hernandez, M., Kelly, J. F., Wacker, M., and Aebi, M. (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966.

    Article  CAS  PubMed  Google Scholar 

  32. Norris, J. L., Porter, N. A., and Caprioli, R. M. (2003) Mass spectrometry of intracellular and membrane proteins using cleavable detergents. Anal. Chem. 75, 6642–6647.

    Article  CAS  PubMed  Google Scholar 

  33. Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E., and Coon, J. J. (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem. 79, 477–485.

    Article  CAS  PubMed  Google Scholar 

  34. Young, N. M., Brisson, J. -R., Kelly, J., Watson, D. C., Tessier, L., Lanthier, P. H., Jarrell, H. C., Cadotte, N., St, M. F., Aberg, E., and Szymanski, C. M. (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Catherine Paul for isolation of C. botulinum flagellin proteins and James Mullen for assistance with preliminary mass spectrometry characterizations of flagellin. We also thank Kelly Fulton for assistance with final manuscript preparations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Twine, S.M., Tessier, L., Kelly, J.F. (2010). Glycoprotein Characterization. In: Li, J. (eds) Functional Glycomics. Methods in Molecular Biology, vol 600. Humana Press. https://doi.org/10.1007/978-1-60761-454-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-454-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-453-1

  • Online ISBN: 978-1-60761-454-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics