Skip to main content

Combination of Fluorescence In Situ Hybridization with Staining Techniques for Cell Viability and Accumulation of PHA and polyP in Microorganisms in Complex Microbial Systems

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 599))

Abstract

Fluorescence in situ hybridization (FISH) can be combined with a number of staining techniques to reveal the relationships between the microorganisms and their function in complex microbial systems with a single-cell resolution. In this chapter, we have focused on staining methods for intracellular storage compounds (polyhydroxyalkanoates, polyphosphate) and a measure for cell viability, reduction of the tetrazolium-based redox stain CTC. These protocols are optimized for the study of microorganisms in waste-water treatment (activated sludge and biofilms), but they may also be used with minor modifications in many other ecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee, N., Nielsen, P. H., Andreasen, K. H., Juretschko, S., Nielsen, J. L., and Schleifer, K. H., Wagner, M. (1999) Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 1289–1297.

    CAS  Google Scholar 

  2. Wagner, M., Nielsen, P. H., Loy, A., Nielsen, J. L., and Daims, H. (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr. Opin. Biotechnol. 17, 83–91.

    Article  CAS  Google Scholar 

  3. Ouverney, C. C., and Fuhrman, J. A. (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65, 1746–1752.

    CAS  Google Scholar 

  4. Nielsen, J. L., and Nielsen, P. H. (2005) Advances in microscopy: microautoradiography of single cells. Methods Enzymol. 397, 237–256.

    Article  CAS  Google Scholar 

  5. Nielsen, J. L., Christensen, D., Kloppenborg, M., and Nielsen, P. H. (2003) Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ. Microbiol. 5, 202–211.

    Article  CAS  Google Scholar 

  6. Hesselsoe, M., Nielsen, J. L., Roslev, P., and Nielsen, P. H. (2005) Isotope labeling and microautoradiography of active heterotrophic bacteria assimilation of 14 CO2 (HetCO2-MAR). Appl. Environ. Microbiol. 71, 646–655.

    Article  CAS  Google Scholar 

  7. Behrens, S., Losekann, T., Pett–Ridge, J., Weber, P. K., Ng, W. O., Stevenson, B. S., et al. (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74, 3143–3150.

    Article  CAS  Google Scholar 

  8. Huang, W. E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A. S., and Wagner, M. (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889.

    Article  CAS  Google Scholar 

  9. Li, T., Wu, T. D., Mazeas, L., Toffin, L., Guerquin-Kern, J. L., Leblon, G., and Bouchez, T. (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10, 580–588.

    Article  CAS  Google Scholar 

  10. Neufeld, J. D., and Murrell, J. C. (2007) Witnessing the last supper of uncultivated microbial cells with Raman-FISH. ISME J. 1, 269–270.

    Google Scholar 

  11. Nielsen, J. L., Aquino, d. M., and Nielsen, P. H. (2003) Evaluation of the redox dye 5-cyano-2,3-tolyl-tetrazolium chloride for activity studies by simultaneous use of microautoradiography and fluorescence in situ hybridization. Appl. Environ. Microbiol. 69, 641–643.

    Article  CAS  Google Scholar 

  12. Creach, V., Baudoux, A. C., Bertru, G., and Rouzic, B. L. (2003) Direct estimate of active bacteria: CTC use and limitations. J. Microbiol. Methods 52, 19–28.

    Article  CAS  Google Scholar 

  13. Rodriguez, G. G., Phipps, D., Ishiguro, K., and Ridgway, H. F. (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58, 1801–1808.

    CAS  Google Scholar 

  14. Eikelboom, D. H. (2000) Process control of activated sludge plants by microscopic investigation. IWA Publishing, London.

    Google Scholar 

  15. Tsai, C. S., and Liu, W. T. (2002) Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Sci. Technol. 46, 179–184.

    CAS  Google Scholar 

  16. Liu, W. T., Nielsen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y., and Molin, S. (2001) In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ. Microbiol. 3, 110–122.

    Article  CAS  Google Scholar 

  17. Kragelund, C., Nielsen, J. L., Thomsen, T. R., and Nielsen, P. H. (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol. Ecol. 54, 111–122.

    Article  CAS  Google Scholar 

  18. Kragelund, C., Kong, Y., van der Waarde, J., Thelen, K., Eikelboom, D., Tandoi, V., et al. (2006) Ecophysiology of different filamentous Alphaproteobacteria species from industrial waste water treatment plants. Microbiology 152, 3003–3012.

    Article  Google Scholar 

  19. Kong, Y. H., Xia, Y., Nielsen, J. L., and Nielsen, P. H. (2006) Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full scale EBPR wastewater treatment plants. Environ. Microbiol. 8, 479–489.

    Article  CAS  Google Scholar 

  20. Dawes, E. A. (1991) Storage polymers in prokaryotes in Prokaryotic structure and function. (Mohan, S., Dow, C. and Coles, J. A., ed.), Cambridge University Press, pp. 81–122.

    Google Scholar 

  21. Tandoi, V., Majone, M., May, J., and Ramadori, R. (1998) The behaviour of polyphosphate accumulating Acinetobacter isolates in an anaerobic-aerobic chemostat. Water Res. 32, 2903–2912.

    Article  CAS  Google Scholar 

  22. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L. L. (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66, 1175–1182.

    Article  CAS  Google Scholar 

  23. Nielsen, P. H., de Muro, M. A., and Nielsen, J. L. (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ. Microbiol. 2, 389–398.

    Article  CAS  Google Scholar 

  24. Kawaharasaki, M., Tanaka, H., Kanagawa, T., and Nakamura, K. (1999) In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4 ',6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res. 33, 257–265.

    Article  CAS  Google Scholar 

  25. Amann, R. I. (1995) In situ identification of micro-organisms by whole cell hybridization with rRNA- targeted nucleic acid probes in Molecular microbial ecological manual. (Akkermanns, A. D. L., van Elsas, J. D., de Bruijn, F. J., ed) Kluwer Academic Publications, London, pp. 1–15.

    Google Scholar 

  26. Daims, H., Ramsing, N. B., Schleifer, K. -H., and Wagner, M. (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl. Environ. Microbiol. 67, 5810–5818.

    Article  CAS  Google Scholar 

  27. Pernthaler, A., and Pernthaler, J. (2007) Fluorescence in situ hybridization for the identification of environmental microbes. Methods Mol. Biol. 353, 153–164.

    Google Scholar 

  28. Chorvat, D., Jr., Kirchnerova, J., Cagalinec, M., Smolka, J., Mateasik, A., and Chorvatova, A. (2005) Spectral unmixing of flavin autofluorescence components in cardiac myocytes. Biophys. J. 89, L55–L57.

    Article  CAS  Google Scholar 

  29. Yilmaz, L. S., Okten, H. E., and Noguera, D. R. (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl. Environ. Microbiol. 72, 733–744.

    Article  CAS  Google Scholar 

  30. Van Ommen Kloecke, F., and Geesey, G. G. (1999) Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs. Microb. Ecol. 38, 201–214.

    Article  Google Scholar 

  31. Nielsen, P. H., Roslev, P., Dueholm, T. E., and Nielsen, J. L. (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci. Technol. 46, 73–80.

    CAS  Google Scholar 

  32. Xia, Y., Kong, Y., and Nielsen, P. H. (2007) In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol. Ecol. 60, 156–165.

    Article  CAS  Google Scholar 

  33. Xia, Y., Kong, Y., Thomsen, T. R., and Nielsen, P. H. (2008) Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge. Appl. Environ. Microbiol. 74, 2229–2238.

    Article  CAS  Google Scholar 

  34. Zita, A., and Hermansson, M. (1997) Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiol. Lett. 152, 299–306.

    Article  CAS  Google Scholar 

  35. Zita, A., and Hermansson, M. (1997) Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl. Environ. Microbiol. 63, 1168–1170.

    CAS  Google Scholar 

  36. Nielsen, J. L., Mikkelsen, L. H., and Nielsen, P. H. (2001) In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci. Tech. 43, 97–103.

    CAS  Google Scholar 

  37. Larsen, P., Nielsen, J. L., Otzen, D., and Nielsen, P. H. (2008) Amyloid-like adhesins produced by floc–forming and filamentous bacteria in activated sludge. Appl. Environ. Microbiol. 74, 1517–1526.

    Article  CAS  Google Scholar 

  38. Larsen, P., Nielsen, J. L., Dueholm, M. S., Wetzel, R., Otzen, D., and Nielsen, P. H. (2007) Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 3077–3090.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Nielsen, J.L., Kragelund, C., Nielsen, P.H. (2010). Combination of Fluorescence In Situ Hybridization with Staining Techniques for Cell Viability and Accumulation of PHA and polyP in Microorganisms in Complex Microbial Systems. In: Cummings, S. (eds) Bioremediation. Methods in Molecular Biology, vol 599. Humana Press. https://doi.org/10.1007/978-1-60761-439-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-439-5_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-440-1

  • Online ISBN: 978-1-60761-439-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics