Skip to main content

Drug Ratio-Dependent Antagonism: A New Category of Multidrug Resistance and Strategies for Its Circumvention

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

A newly identified form of multidrug resistance (MDR) in tumor cells is presented, pertaining to the commonly encountered resistance of cancer cells to anticancer drug combinations at discrete drug:drug ratios. In vitro studies have revealed that whether anticancer drug combinations interact synergistically or antagonistically can depend on the ratio of the combined agents. Failure to control drug ratios in vivo due to uncoordinated pharmacokinetics could therefore lead to drug resistance if tumor cells are exposed to antagonistic drug ratios. Consequently, the most efficacious drug combination may not occur at the typically employed maximum tolerated doses of the combined drugs if this leads to antagonistic ratios in vivo after administration and resistance to therapeutic effects of the drug combination. Our approach to systematically screen a wide range of drug ratios and concentrations and encapsulate the drug combination in a liposomal delivery vehicle at identified synergistic ratios represents a means to mitigate this drug ratio-dependent MDR mechanism. The in vivo efficacy of the improved agents (CombiPlex formulations) is demonstrated and contrasted with the decreased efficacy when drug combinations are exposed to tumor cells in vivo at antagonistic ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frei EI, Freireich EJ (1964) Leukemia. Sci Am 210:88–96

    Article  PubMed  Google Scholar 

  2. Freireich EJ, Frei EI (1964) Recent advances in acute leukemia. Prog Hematol 27:187–202

    Google Scholar 

  3. Ramsay EC, Dos Santos N, Dragowska WH, Laskin JJ, Bally MB (2005) The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combination. Curr Drug Del 2:341–351

    Article  CAS  Google Scholar 

  4. Ewesuedo RB, Ratain MJ (2003) Principles of cancer therapeutics. In: Vokes EE, Golomb HM (eds) Oncologic therapies. Springer, Secaucus, NJ, pp 19–66

    Google Scholar 

  5. Shabbits JA, Krishna R, Mayer LD (2001) Molecular and pharmacological strategies to overcome multidrug resistance. Expert Rev Anticancer Ther 1:89–98

    Article  Google Scholar 

  6. Coley HM (2008) Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34:378–390

    Article  CAS  PubMed  Google Scholar 

  7. Shabbits JA, Hu Y, Mayer LD (2003) Tumor chemosensitization strategies based on apoptosis manipulations. Mol Cancer Ther 2:805–813

    CAS  PubMed  Google Scholar 

  8. Zhou SF, Wang LL, Di YM et al (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Tomas R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13:1859–1876

    Article  CAS  PubMed  Google Scholar 

  10. Nobili S, Landini I, Giglioni B, Mini E (2006) Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 7:861–879

    Article  CAS  PubMed  Google Scholar 

  11. Shah MA, Schwartz GK (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 7:2168–2181

    CAS  PubMed  Google Scholar 

  12. Dancey JE, Chen HX (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Disc 5:649–659

    Article  CAS  Google Scholar 

  13. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Disc 4:1–8

    Article  Google Scholar 

  14. Lehar J, Zimmermann GR, Krueger AS et al (2007) Chemical combination effects predict connectivity in biological systems. Mol Sys Biol 3:1–14

    Google Scholar 

  15. Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: Bevacizumab (Avastin®) plus carboplatin and paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12:713–718

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz RN, Vozniak M (2008) Current and emerging treatments in multiple myeloma. J Manag Care Pharm 14:S12–S18

    Google Scholar 

  17. Tannock IF, de Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    Article  CAS  PubMed  Google Scholar 

  18. von der Maase H, Hansen SW, Roberts JT et al (2000) Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 18:3068–3077

    PubMed  Google Scholar 

  19. Hongrapipat J, Kopeckova P, Liu J, Prakongpan S, Kopecek J (2008) Combination chemotherapy and photodynamic therapy with Fab’ fragment trageted HPMA copolymer conjugates in human ovarian carcinoma cells. Mol Pharm 5:696–709

    Article  CAS  PubMed  Google Scholar 

  20. Photiou A, Shah P, Leong LK, Moss J, Retsas S (1997) In vitro synergy of paclitaxel (Taxol) and vinorelbine (Navelbine) against human melanoma cell lines. Eur J Cancer 33:463–470

    Article  CAS  PubMed  Google Scholar 

  21. Frei EI (1972) Combination cancer therapy: Presidential address. Cancer Res 32: 2593–2607

    PubMed  Google Scholar 

  22. Adams DJ, Sandvold ML, Myhren F et al (2008) Anti proliferative activity of ELACY (CP-4055) in combination with cloretazine (VNP40101M), idarubicin, gemcitabine, irinotecan and topetecan in human leukemia and lymphoma cells. Leuk Lymph 49:786–797

    Article  CAS  Google Scholar 

  23. Saiman L (2007) Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: “the motion for”. Paediatr Respir Rev 8:249–255

    Article  PubMed  Google Scholar 

  24. Seydel JK, Schaper KJ, Rüsch-Gerdes S (1994) Experimental drugs and combination therapy. Immunobiology 191:569–577

    CAS  PubMed  Google Scholar 

  25. Timukaynak F, Can F, Azap OK et al (2006) In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrob Agents 27:224–228

    Article  Google Scholar 

  26. Urban C, Segal-Maurer S, Rahal JJ (2003) Considerations in control and treatment of nosocomial infections due to multidrug-resistant Acinetobacter baumannii. Clin Infect Des 36:1268–1274

    Article  CAS  Google Scholar 

  27. Mayer LD, Harasym TO, Tardi PG et al (2006) Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther 5:1854–1863

    Article  CAS  PubMed  Google Scholar 

  28. Mayer LD, Janoff AS (2007) Optimizing combination chemotherapy by controlling drug ratios. Mol Interv 7:216–223

    Article  CAS  PubMed  Google Scholar 

  29. Borisy AA, Elliot PJ, Hurst NW et al (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 100:7977–7982

    Article  CAS  PubMed  Google Scholar 

  30. Kanzawa F, Koizumi F, Koh Y et al (2001) In vitro synergistic interactions between the cisplatin analogue nedaplatin and the DNA topoisomerase I inhibitor irinotecan and the mechanism of this interaction. Clin Cancer Res 7:202–209

    CAS  PubMed  Google Scholar 

  31. Raitanen M, Rantanen V, Kulmala J et al (2002) Supra-additive effect with concurrent paclitaxel and cisplatin in vulvar squamous cell carcinoma in vitro. Int J Cancer 100:238–243

    Article  CAS  PubMed  Google Scholar 

  32. Mercalli A, Sordi V, Formicola R et al (2007) A preclinical evaluation of pemetrexed and irinotecan combination as second-line chemotherapy in pancreatic cancer. Br J Cancer 96:1358–1367

    CAS  PubMed  Google Scholar 

  33. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergsim and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  34. Harasym TO, Tardi PG, Harasym NL et al (2007) Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res 16:361–374

    PubMed  Google Scholar 

  35. Berenbaum MC (1977) Synergy, additivism and antagonism in immunosuppression. Clin Exp Immunol 28:1–18

    CAS  PubMed  Google Scholar 

  36. Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    CAS  PubMed  Google Scholar 

  37. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385

    CAS  PubMed  Google Scholar 

  38. Greco WR, Park HS, Rustum YM (1990) An application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-β-D-arabinofuranosylcytosine. Cancer Res 50:5318–5327

    CAS  PubMed  Google Scholar 

  39. Weinstein JL, Bunow B, Weislow OS et al (1990) Synergistic drug combinations in AIDS therapy. Ann N Y Acad Sci 616:367–384

    Article  CAS  PubMed  Google Scholar 

  40. Tardi PG, Johnstone SA, Harasym NL et al (2009) In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33:129–139

    Article  CAS  PubMed  Google Scholar 

  41. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  42. Chou TC (1991) The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, Rideout DC (eds) Synergism and antagonism in chemotherapy. Academic, New York, pp 61–102

    Google Scholar 

  43. Konecny G, Untch M, Slamon DJ et al (2001) Drug interactions and cytotoxic effects of paclitaxel in combination with carboplatin, epirubicin or vinorelbine in breast cancer cell lines and tumor samples. Breast Cancer Res Tr 67:223–233

    Article  CAS  Google Scholar 

  44. Lisztwan J, Pornon A, Chen B, Chen S, Evans DB (2008) The aromatase inhibitor letrozole and inhibitors of insulin-like growth factor I receptor synergistically induce apoptosis in in vitro models of estrogen-dependent breast cancer. Breast Cancer Res 10:R56

    Article  PubMed  Google Scholar 

  45. Saigal B, Glisson BS, Johnson FM (2008) Dose-dependent and sequence-dependent cytotoxicity of erlotinib and docetaxel in head and neck squamous cell carcinoma. Anticancer Drugs 19:465–477

    Article  CAS  PubMed  Google Scholar 

  46. Tardi PG, Gallagher RG, Johnstone SA et al (2007) Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim Biophys Acta 1768:678–687

    Article  CAS  PubMed  Google Scholar 

  47. Harasym TO, Tardi PG, Johnstone SA et al (2007) Fixed drug ratio liposome formulations of combination cancer therapeutics. In: Gregoriadis G (ed) Liposome technology volume III: interactions of liposomes with biological milieu, 3rd edn. Informa Healthcare USA Inc., New York, pp 25–46

    Google Scholar 

  48. Douillard JY, Cunningham D, Roth AD et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicenter randomised trial. Lancet 355:1041–1047

    Article  CAS  PubMed  Google Scholar 

  49. Saltz LB, Cox JV, Blanke C et al (2000) Irinotecan plus fluororuracil and leucovorin for metastatic colorectal cancer. N Engl J Med 343:905–914

    Article  CAS  PubMed  Google Scholar 

  50. Corbett T, Valeriote F, LoRusso P, et al (1997) In vivo methods for screening and preclinical testing – use of rodent solid tumors for drug delivery. In: Anticancer drug development guide: preclinical screening, clinical trials, and approval, Humana, Totawa, NJ, pp. 75–99

    Google Scholar 

  51. Grindley GB (1982) Multiple models of utility for the rational development of new concepts involved in metabolic modulation. In: Fidler IJ, White RJ (eds) Design of models for testing cancer therapeutic agents. Van Nostrand Reinhold, New York, pp 206–214

    Google Scholar 

  52. Harrison S (2002) Perspective on the history of tumor models. In: Teicher BA (ed) Tumor models in cancer research. Humana, Totawa, NJ, pp 3–22

    Google Scholar 

  53. Johnson RK (1990) Screening methods in antineoplastic drug discovery. J Natl Cancer Inst 82:1082–1083

    Article  CAS  PubMed  Google Scholar 

  54. Kaufmann SH, Peereboom CA, Buckwalter CA et al (1996) Cytotoxic effects of Topetecan combined with various anticancer agents in human cancer lines. J Natl Cancer Inst 88:734–741

    Article  CAS  PubMed  Google Scholar 

  55. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxcity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  56. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  57. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy. AAPS J 9:E128–E147

    Article  CAS  PubMed  Google Scholar 

  58. Batist G, Chi K, Miller W et al (2006) Phase 1 study of CPX-1, a fixed ratio formulation of irinotecan (IRI) and floxuridine (FLOX), in patients with advanced solid tumors. J Clin Oncol 24:2014

    Google Scholar 

  59. Batist G, Miller W, Mayer L et al (2007) Ratiometric dosing of irinotecan (IRI) and floxuridine (FLOX) in a phase I trial: a new approach for enhancing the activity of combination chemotherapy. J Clin Oncol 25:2549

    Google Scholar 

  60. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  61. Lasic DD, Martin FJ (1995) Stealth liposomes. CRC, Boca Raton, FL

    Google Scholar 

  62. Tari A, Huang L (1989) Structure and function of phosphatidylglycerol in the stabilization of the phosphatidylethanolamine bilayer. Biochemistry 28:7708–7712

    Article  CAS  PubMed  Google Scholar 

  63. Boman NL, Mayer LD, Cullis PR (1993) Optimization of the retention properties of vincristine in liposomal systems. Biochim Biophys Acta 1152:253–258

    Article  CAS  PubMed  Google Scholar 

  64. Dos Santos N, Mayer LD, Abraham SA et al (2002) Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochim Biophys Acta 1561:188–201

    Article  PubMed  Google Scholar 

  65. Dos Santos, N., Waterhouse, D., Masin, D. et al (2005) Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity. J Control Release 105:89–109

    Article  Google Scholar 

  66. Mayer LD, Cullis PR, Bally MB (1994) The use of transmembrane pH gradient-driven drug encapsulation in the pharmacodynamic evaluation of liposomal doxorubicin. J Liposome Res 4:529–553

    Article  Google Scholar 

  67. Peleg-Shulman T, Gibson D, Cohen R, Abra R, Barenholz Y (2001) Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance. Biochim Biophys Acta 1510:894–902

    Google Scholar 

  68. Cullis PR, Hope MJ, Bally MB et al (1997) Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides, and metal ions into large unilamellar vesicles. Biochim Biophys Acta 1331:187–211

    CAS  PubMed  Google Scholar 

  69. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB (2008) Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 97:4696–4740

    Article  CAS  PubMed  Google Scholar 

  70. Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposome produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151:201–215

    Article  CAS  PubMed  Google Scholar 

  71. Kirpotin DB (2000) Compound loaded liposomes and methods for their preparation. US Patent 6, 110, 491

    Google Scholar 

  72. Abraham SA, McKenzie C, Masin D et al (2004) In vitro and in vivo characterization of doxorubicin and vincristine coencapsulated within liposomes through use of transition metal ion complexation and pH gradient loading. Clin Cancer Res 10:728–738

    Article  CAS  PubMed  Google Scholar 

  73. Li C, Cui J, Li Y et al (2008) Copper ion-mediated liposomal encapsulation of mitoxantrone: the role of anions in drug loading, retention and release. Eur J Pharm Sci 34:333–344

    Article  PubMed  Google Scholar 

  74. Ramsay EC, Alnajim J, Taggar A et al (2006) Transition metal-mediated liposomal encapsulation of irinotecan (CPT-11) stabilizes the drug in the therapeutically active lactone conformation. Pharm Res 23:2799–2808

    Article  CAS  PubMed  Google Scholar 

  75. Taggar A, Alnajim J, Anantha M et al (2006) Copper-topetecan complexation mediates drug accumulation into liposomes. J Control Release 114:78–88

    Article  CAS  PubMed  Google Scholar 

  76. Dicko A, Tardi PG, Xie X, Mayer LD (2007) Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int J Pharm 337:219–228

    Article  CAS  PubMed  Google Scholar 

  77. Dicko A, Frazier AA, Liboiron BD et al (2008) Intra and inter-molecular interactions dictate the aggregation state of irinotecan co-encapsulated with floxuridine inside liposomes. Pharm Res 25:1702–1713

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Lu W-L, Guo J et al (2008) A potential target associated with both cancer and cancer stem cells: a combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes. J Control Release 129:18–25

    Article  CAS  PubMed  Google Scholar 

  79. Wang J, Goh B, Lu W et al (2005) In vitro cytotoxicity of stealth liposomes co-encapsulating doxorubicin and verapamil on doxorubicin-resistant tumour cells. Biol Pharm Bull 28:822–828

    Article  CAS  PubMed  Google Scholar 

  80. Webb MS, Johnstone S, Morris TJ et al (2007) In vitro and in vivo characterization of a combination chemotherapy formulation consisting of vinorelbine and phosphatidylserine. Eur J Pharm Biopharm 65:289–299

    Article  CAS  PubMed  Google Scholar 

  81. Wu J, Lu Y, Lee A et al (2007) Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharmaceut Sci 10:350–357

    CAS  Google Scholar 

  82. Zhao X, Wu J, Muthusamy N, Byrd JC, Lee RJ (2008) Liposomal coencapsulated fludarabine and mitoxantrone for lymphoproliferative disorder treatment. J Pharm Sci 97:1508–1518

    Article  CAS  PubMed  Google Scholar 

  83. Vaage J, Donovan D, Mayhew E, Uster P, Woodle M (1993) Therapy of mouse mammary carcinomas with vincristine and doxorubicin encapsulated in sterically stabilized liposomes. Int J Cancer 54:959–964

    Article  CAS  PubMed  Google Scholar 

  84. Fraser TR (1870–1871) An experimental research on the antagonism between the actions of physostigma and atropia. Proc R Soc Edinb 7:506–511

    Google Scholar 

  85. Fraser TR (1871) The antagonism between the actions of active substances. Br Med J 2:485–487

    Article  Google Scholar 

  86. Loewe S (1928) Die Quantitation Probleme der Pharmakologie. Ergeb Physiol Biol Chem Exp Pharmakol 27:47–187

    Google Scholar 

  87. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneim Forsch 3:285–290

    CAS  Google Scholar 

  88. Loewe S (1957) Antagonism and antagonists. Pharmacol Rev 9:237–242

    CAS  PubMed  Google Scholar 

  89. Loewe S, Muischnek H (1926) Effect of combinations: mathematical basis of problem. Arch Exp Pathol Pharmakol 114:313–326

    Article  CAS  Google Scholar 

  90. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  91. Webb JL (1963) Effect of more than one inhibitor. In: Webb JL (ed) Enzymes and metabolic inhibitors, Vol. 1. Academic, New York, pp. 66–79, 487–512

    Google Scholar 

  92. Cox DR (1970) The analysis of binary data. Methuen, London

    Google Scholar 

  93. Gessner PK (1974) The isobolographic method applied to drug interactions. In: Morselli PL, Garattini S, Cohen SN (eds) Drug interactions. Raven, New York, pp 349–362

    Google Scholar 

  94. Valeriote F, Lin H (1975) Synergistic interaction of anticancer agents: a cellular perspective. Cancer Chemother Rep 59:895–900

    CAS  PubMed  Google Scholar 

  95. Drewinko B, Loo TL, Brown B, Gottlieb JA, Freireich EJ (1976) Combination chemotherapy in vitro with adriamycin. Observations of additive, antagonistic, and synergistic effects when used in two-drug combinations on cultured human lymphoma cells. Cancer Biochem Biophys 1:187–195

    CAS  PubMed  Google Scholar 

  96. Berenbaum MC (1985) The expected effect of a combination of agents: the general solution. J Theor Biol 114:413–431

    Article  CAS  PubMed  Google Scholar 

  97. Greco WR, Lawrence DL (1988) Assessment of the degree of drug interaction where the response variable is discrete. Am Stat Assoc, Proc Biopharm Sect 183–188

    Google Scholar 

  98. Prichard MN, Shipman C Jr (1990) A three dimensional model to analyze drug–drug interactions (review). Antiviral Res 14:181–206

    Article  CAS  PubMed  Google Scholar 

  99. Prichard MN, Shipman C Jr (1992) Response to J. Sühnel’s comment on the paper: A three-dimensional model to analyze drug–drug interactions, by Prichard MN, Shipman C Jr, in Antiviral Res 14:181–206, 1990. Antiviral Res 17:95–98

    Google Scholar 

  100. Sühnel J (1992) Comment on the paper: A three-dimensional model to analyze drug–drug interactions, by Prichard MN, Shipman C Jr, in Antiviral Res 14:181–186, 1990. Antiviral Res 17:91–93

    Google Scholar 

  101. Sühnel J (1990) Evaluation of synergism and antagonism for the combined action of antiviral agents. Antiviral Res 13:23–40

    Article  PubMed  Google Scholar 

  102. Greco WR, Rustum YM (1992) Reply to letters by Berenbaum and Sühnel concerning Greco et al. 1990, in Cancer Res 50:5318–5327, 1990. Cancer Res 52:4561–4565

    Google Scholar 

  103. Sühnel J (1992) Correspondence regarding W R. Greco et al.: an application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-β-D-arabinofuranosylcytosine. Cancer Res 50:5318–5327, 1990. Cancer Res 52: 4560–4561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Harasym, T.O., Liboiron, B.D., Mayer, L.D. (2010). Drug Ratio-Dependent Antagonism: A New Category of Multidrug Resistance and Strategies for Its Circumvention. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics