Skip to main content

Purification and Localization of Intraflagellar Transport Particles and Polypeptides

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 586))

Summary

The growth and maintenance of almost all cilia and flagella are dependent on the proper functioning of the process of intraflagellar transport (IFT). This includes the primary cilia of most cells in humans that are in interphase or the Go phase of the cell cycle. The model system for the study of IFT is the flagella of the bi-flagellate green alga Chlamydomonas. It is in this organism that IFT was first discovered, and genetic data from a Chlamydomonas mutant first linked the process of IFT to polycystic kidney disease in humans. The information given in this chapter addresses procedures to purify IFT particles from flagella and localize these particles, and their associated motor proteins, in flagella using light and electron microscopic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    The term ‘flagella’ will be used throughout this manuscript, but readers should realize that the process of IFT occurs—and is just as important—in cilia as well. Indeed, many developmental problems and diseases of humans are related to defects in primary cilia, some of which derive from defects in IFT (see reference ( 1 ) R.D. Sloboda, and J.L. Rosenbaum, Making sense of cilia and flagella. J Cell Biol 179 (2007) 575–82. for a recent overview of this field).

References

  1. R.D. Sloboda, and J.L. Rosenbaum (2007). Making sense of cilia and flagella. J Cell Biol 179 575–582

    Article  CAS  PubMed  Google Scholar 

  2. K.G. Kozminski, K.A. Johnson, P. Forscher, and J.L. Rosenbaum (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90 5519–5523

    Article  CAS  PubMed  Google Scholar 

  3. K.G. Kozminski, P.L. Beech, and J.L. Rosenbaum (1995). The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with flagellar membrane. J Cell Biol 131 1517–1527

    Article  CAS  PubMed  Google Scholar 

  4. K.G. Kozminski (1995). High-resolution imaging of flagella. Methods Cell Biol 47 263–271

    Article  CAS  PubMed  Google Scholar 

  5. J. Mueller, C.A. Perrone, R. Bower, D.G. Cole, and M.E. Porter (2005). The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 16 1341–1354

    Article  CAS  PubMed  Google Scholar 

  6. G.J. Pazour, B.L. Dickert, and G.B. Witman (1999). The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144 473–481

    Article  CAS  PubMed  Google Scholar 

  7. M.E. Porter, R. Bower, J.A. Knott, P. Byrd, and W. Dentler (1999). Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10 693–712

    CAS  PubMed  Google Scholar 

  8. D. Signor, K.P. Wedaman, J.T. Orozco, N.D. Dwyer, C.I. Bargmann, L.S. Rose, and J.M. Scholey (1999). Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147 519–530

    Article  CAS  PubMed  Google Scholar 

  9. Z. Walther, M. Vashishtha, and J.L. Hall (1994). The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J Cell Biol 126 175–188

    Article  CAS  PubMed  Google Scholar 

  10. D.G. Cole, D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141 993–1008

    Article  CAS  PubMed  Google Scholar 

  11. D.G. Cole (2003). The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 4 435–442

    Article  CAS  PubMed  Google Scholar 

  12. K.A. Johnson, and J.L. Rosenbaum (1992). Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119 1605–1611

    Article  CAS  PubMed  Google Scholar 

  13. W.L. Dentler, and J.L. Rosenbaum (1977). Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol 74 747–759

    Article  CAS  PubMed  Google Scholar 

  14. W.L. Dentler (1980). Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci 42 207–220

    CAS  PubMed  Google Scholar 

  15. W.S. Sale, and P. Satir (1977). The termination of the central microtubules from the cilia of Tetrahymena pyriformis. Cell Biol Int Rep 1 56–63

    Article  Google Scholar 

  16. D.S. Gorman, and R.P. Levine (1965). Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54 1665–1669

    Article  CAS  PubMed  Google Scholar 

  17. S.H. Hutner, L. Provasoli, Albert Schatz, and C. P. Haskins (1950). Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philos Soc 94 152–170

    CAS  Google Scholar 

  18. S. Surzycki (1971). Synchronously Grown Cultures of Chlamydomonas reinhardi. Meth Enzymol 23 67–84

    Article  Google Scholar 

  19. R.D. Sloboda, and L. Howard (2007). Localization of EB1, IFT polypeptides, and kinesin-2 in Chlamydomonas flagellar axonemes via immunogold scanning electron microscopy. Cell Motil Cytoskeleton 64 446–460

    Article  CAS  PubMed  Google Scholar 

  20. U.K. Laemmli (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685

    Article  CAS  PubMed  Google Scholar 

  21. D. Best, P.J. Warr, and K. Gull (1981). Influence of the composition of commercial sodium dodecyl sulfate preparations on the separation of alpha- and beta-tubulin during polyacrylamide gel electrophoresis. Anal Biochem 114 281–284

    Article  CAS  PubMed  Google Scholar 

  22. R.E. Stephens (1998). Electrophoretic resolution of tubulin and tektin subunits by differential interaction with long-chain alkyl sulfates. Anal Biochem 265 356–360

    Article  CAS  PubMed  Google Scholar 

  23. G. Fairbanks, T.L. Steck, and D.F. Wallach (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10 2606–2617

    Article  CAS  PubMed  Google Scholar 

  24. G.E. Hunt (1947). A technique for aeration of sterile liquid culture medium. Science 105 184

    Article  CAS  PubMed  Google Scholar 

  25. G.B. Witman, K. Carlson, J. Berliner, and J.L. Rosenbaum (1972). Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol 54 507–539

    Article  CAS  PubMed  Google Scholar 

  26. L.B. Pedersen, S. Geimer, R.D. Sloboda, and J.L. Rosenbaum (2003). The Microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol 13 1969–1974

    Article  CAS  PubMed  Google Scholar 

  27. M.J. Schneider, M. Ulland, and R.D. Sloboda (2008). A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption. Mol Biol Cell 10 4319–4327

    Article  Google Scholar 

Download references

Acknowledgments

Work in the author’s lab is supported by the NSF (MCB 0418877) and the NIH (DK 071720). This support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sloboda, R.D. (2009). Purification and Localization of Intraflagellar Transport Particles and Polypeptides. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 586. Humana Press. https://doi.org/10.1007/978-1-60761-376-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-376-3_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-375-6

  • Online ISBN: 978-1-60761-376-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics