Skip to main content
Book cover

Lipidomics pp 339–368Cite as

Bioinformatics Strategies for the Analysis of Lipids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 580))

Summary

Owing to their importance in cellular physiology and pathology as well as to recent technological advances, the study of lipids has reemerged as a major research target. However, the structural diversity of lipids presents a number of analytical and informatics challenges. The field of lipidomics is a new postgenome discipline that aims to develop comprehensive methods for lipid analysis, necessitating concomitant developments in bioinformatics. The evolving research paradigm requires that new bioinformatics approaches accommodate genomic as well as high-level perspectives, integrating genome, protein, chemical and network information. The incorporation of lipidomics information into these data structures will provide mechanistic understanding of lipid functions and interactions in the context of cellular and organismal physiology. Accordingly, it is vital that specific bioinformatics methods be developed to analyze the wealth of lipid data being acquired. Herein, we present an overview of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and application of its tools to the analysis of lipid data. We also describe a series of software tools and databases (KGML-ED, VANTED, MZmine, and LipidDB) that can be used for the processing of lipidomics data and biochemical pathway reconstruction, an important next step in the development of the lipidomics field.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fahy E, Subramaniam S, Brown HA, et al. (2005) A comprehensive classification system for lipids. J Lipid Res 46, 839–861.

    Article  CAS  PubMed  Google Scholar 

  2. van Meer G. (2005) Cellular lipidomics. Embo J 24, 3159–3165.

    Article  PubMed  Google Scholar 

  3. Wenk MR. (2006) Lipidomics of host-pathogen interactions. FEBS Lett 580, 5541–5551.

    Article  CAS  PubMed  Google Scholar 

  4. Adibhatla RM, Hatcher JF. (2007) Role of lipids in brain injury and diseases. Future Lipidol 2, 403–422.

    Article  CAS  PubMed  Google Scholar 

  5. Wymann MP, Schneiter R. (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9, 162–176.

    Article  CAS  PubMed  Google Scholar 

  6. Wenk MR. (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4, 594–610.

    Article  CAS  PubMed  Google Scholar 

  7. Mattila I, Seppanen-Laakso T, Suortti T, Oresic M. (2008) Application of lipidomics and metabolomics to the study of adipose tissue. Methods Mol Biol 456, 123–130.

    Article  PubMed  Google Scholar 

  8. Jia L, Wang C, Zhao S, Lu X, Xu G. (2007) Metabolomic identification of potential phospholipid biomarkers for chronic glomerulonephritis by using high performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 860, 134–140.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts LD, McCombie G, Titman CM, Griffin JL. (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 871, 174–181.

    Article  CAS  PubMed  Google Scholar 

  10. Han X, Gross RW. (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24, 367–412.

    Article  CAS  PubMed  Google Scholar 

  11. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. (2008) Informatics and computational strategies for the study of lipids. Mol Biosyst 4, 121–127.

    Article  CAS  PubMed  Google Scholar 

  12. Baker CJ, Kanagasabai R, Ang WT, Veeramani A, Low HS, Wenk MR. (2008) Towards ontology-driven navigation of the lipid bibliosphere. BMC Bioinformatics 9 Suppl 1, S5.

    Article  PubMed  Google Scholar 

  13. Schmelzer K, Fahy E, Subramaniam S, Dennis EA. (2007) The lipid maps initiative in lipidomics. Methods Enzymol 432, 171–183.

    Article  CAS  PubMed  Google Scholar 

  14. van Meer G, Leeflang BR, Liebisch G, Schmitz G, Goni FM. (2007) The European lipidomics initiative: enabling technologies. Methods Enzymol 432, 213–232.

    Article  PubMed  Google Scholar 

  15. Taguchi R, Nishijima M, Shimizu T. (2007) Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods Enzymol 432, 185–211.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe K, Yasugi E, Oshima M. (2000) How to search the glycolipid data in LIPIDBANK for Web: the newly developed lipid database. Japan Trend Glycosci Glycotechnol 12, 175–184.

    CAS  Google Scholar 

  17. Fahy E, Sud M, Cotter D, Subramaniam S. (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35, W606–612.

    Article  PubMed  Google Scholar 

  18. Sud M, Fahy E, Cotter D, et al. (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35, D527–532.

    Article  CAS  PubMed  Google Scholar 

  19. Cotter D, Maer A, Guda C, Saunders B, Subramaniam S. (2006) LMPD: LIPID MAPS proteome database. Nucleic Acids Res 34, D507–510.

    Article  CAS  PubMed  Google Scholar 

  20. Kanehisa M, Araki M, Goto S, et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36, D480–484.

    Article  CAS  PubMed  Google Scholar 

  21. Kanehisa M. (1997) A database for post-genome analysis. Trends Genet 13, 375–376.

    Article  CAS  PubMed  Google Scholar 

  22. Fleischmann RD, Adams MD, White O, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.

    Article  CAS  PubMed  Google Scholar 

  23. Goto S, Nishioka T, Kanehisa M. (1998) LIGAND: chemical database for enzyme reactions. Bioinformatics 14, 591–599.

    Article  CAS  PubMed  Google Scholar 

  24. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M. (2002) LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 30, 402–404.

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M. (2008) The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res 49, 183–191.

    Article  CAS  PubMed  Google Scholar 

  26. Smith TF, Waterman MS. (1981) Identification of common molecular subsequences. J Mol Biol 147, 195–197.

    Article  CAS  PubMed  Google Scholar 

  27. Fujibuchi W, Goto S, Migimatsu H, et al. (1998) DBGET/LinkDB: an integrated database retrieval system. Pac Symp Biocomput 683–694.

    Google Scholar 

  28. Klukas C, Schreiber F. (2007) Dynamic exploration and editing of KEGG pathway diagrams. Bioinformatics 23, 344–350.

    Article  CAS  PubMed  Google Scholar 

  29. Suderman M, Hallett M. (2007) Tools for visually exploring biological networks. Bioinformatics 23, 2651–2659.

    Article  CAS  PubMed  Google Scholar 

  30. Junker BH, Klukas C, Schreiber F. (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7, 109.

    Article  PubMed  Google Scholar 

  31. Klukas C, Junker BH, Schreiber F. (2006) The VANTED software system for transcriptomics, proteomics and metabolomics analysis. J Pestic Sci 31, 289–292.

    Article  CAS  Google Scholar 

  32. Yoshida K, Kobayashi K, Miwa Y, et al. (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29, 683–692.

    Article  CAS  PubMed  Google Scholar 

  33. Fahy E, Cotter D, Byrnes R, et al. (2007) Bioinformatics for lipidomics. Methods Enzymol 432, 247–273.

    Article  CAS  PubMed  Google Scholar 

  34. Lu Y, Hong S, Serhan C. (2006) Lipid mediator informatics-lipidomics: novel pathways in mapping resolution. AAPS Journal 8, E284–E297.

    Article  PubMed  Google Scholar 

  35. Ejsing CS, Duchoslav E, Sampaio J, et al. (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78, 6202–6214.

    Article  CAS  PubMed  Google Scholar 

  36. Kurvinen J-P, Aaltonan J, Kuksis A, H. Kallio. (2002) Software algorithm for automatic interpretation of mass spectra of glycerolipids. Rapid Commun Mass Spectrom 16, 1812–18201.

    Article  CAS  PubMed  Google Scholar 

  37. Hermansson M, Uphoff A, Kakela R, Somerharju P. (2005) Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal Chem 77, 2166–2175.

    Article  CAS  PubMed  Google Scholar 

  38. Katajamaa M, Orešič M. (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6, 179–190.

    Article  PubMed  Google Scholar 

  39. Yetukuri L, Katajamaa M, Medina-Gomez G, Seppanen-Laakso T, Vidal-Puig A, Orešič M. (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Systems Biology 1, 12.

    Article  PubMed  Google Scholar 

  40. Katajamaa M, Miettinen J, Orešič M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636.

    Article  CAS  PubMed  Google Scholar 

  41. Krieger CJ, Zhang P, Mueller LA, et al. (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes 10.1093/nar/gkh100. Nucl Acids Res 32, D438–442.

    Article  CAS  PubMed  Google Scholar 

  42. Gopalacharyulu PV, Lindfors E, Bounsaythip C, et al. (2005) Data integration and visualization system for enabling conceptual biology. Bioinformatics 21, i177–185.

    Article  CAS  PubMed  Google Scholar 

  43. Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa M, van Erk M, Kleemann R, Haeggström JZ, Goto S. (2009) Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol Biosyst. 5(6), 588–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Åke Wibergs Stiftelse, the Fredrik and Ingrid Thurings Stiftelse, and The Royal Swedish Academy of Sciences. C.E.W. was supported by a fellowship from the Centre for Allergy Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wheelock, C.E. et al. (2009). Bioinformatics Strategies for the Analysis of Lipids. In: Armstrong, D. (eds) Lipidomics. Methods in Molecular Biology™, vol 580. Humana Press. https://doi.org/10.1007/978-1-60761-325-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-325-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-324-4

  • Online ISBN: 978-1-60761-325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics