Skip to main content

Cholesterol Absorption and Metabolism

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 602))

Abstract

Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport has become an area of intense new interest for drug discovery since this process is now considered another key to reducing cardiovascular disease risk. The ultimate measure of reverse cholesterol transport is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hui, D. Y. and Howles, P. N. (2005) Molecular mechanisms of cholesterol absorption and transport in the intestine. Semin. Cell Dev. Biol. 16, 183–192.

    Article  PubMed  CAS  Google Scholar 

  2. Levy, E., Spahis, S., Sinnett, D., Peretti, N., Maupas-Schwalm, F., et al. (2007) Intestinal cholesterol transport proteins: an update and beyond. Curr. Opin. Lipidol. 18, 310–318.

    Article  PubMed  CAS  Google Scholar 

  3. Hui, D. Y., Labonté, E. D., and Howles, P. N. (2008) Development and physiological regulation of intestinal lipid absorption III. Intestinal transporters and cholesterol absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 294, 839–843.

    Article  Google Scholar 

  4. Westergaard, H. and Dietschy, J. M. (1976) The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cells. J. Clin. Invest. 58, 97–108.

    Article  PubMed  CAS  Google Scholar 

  5. Thurnhofer, H. and Hauser, H. (1990) Uptake of cholesterol by small intestinal brush border membrane is protein-mediated. Biochemistry 29, 2142–2148.

    Article  PubMed  CAS  Google Scholar 

  6. Borja, C. R., Vahouny, G. V., and Treadwell, C. R. (1964) Role of bile and pancreatic juice in cholesterol absorption and esterification. Am. J. Physiol. 206, 223–228.

    PubMed  CAS  Google Scholar 

  7. Gallo, L. L., Clark, S. B., Myers, S., and Vahouny, G. V. (1984) Cholesterol absorption in rat intestine: Role of cholesterol esterase and acyl coenzyme A:cholesterol acyl transferase. J. Lipid Res. 25, 604–612.

    PubMed  CAS  Google Scholar 

  8. Fernandez, E. and Borgström, B. (1989) Effects of tetrahydrolipstatin, a lipase inhibitor, on absorption of fat from the intestine of the rat. Biochim. Biophys. Acta 1001, 249–255.

    PubMed  CAS  Google Scholar 

  9. McKean M. L., Commons, T .J., Berens, M. S., Hsu, P. L., Ackerman, D. M., et al. (1992) Effect of inhibitors of pancreatic cholesterol ester hydrolase (PCEH) on 14C-cholesterol absorption in animal models. FASEB J. 6, A1388.

    Google Scholar 

  10. Krause, B. R., Sliskovic, D. R., Anderson, M., and Homan, R. (1998) Lipid-lowering effects of WAY-121,898, an inhibitor of pancreatic cholesteryl ester hydrolase. Lipids 33, 489–498.

    Article  PubMed  CAS  Google Scholar 

  11. Howles, P. N., Carter, C. P., and Hui, D. Y. (1996) Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J. Biol. Chem. 271, 7196–7202.

    Article  PubMed  CAS  Google Scholar 

  12. Weng, W., Li, L., van Bennekum, A. M., Potter, S. H., Harrison, E. H., et al. (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38, 4143–4149.

    Article  PubMed  CAS  Google Scholar 

  13. Camarota, L. M., Chapman, J. M., Hui, D. Y., and Howles, P. N. (2004) Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of cholesteryl esters from HDL3. J. Biol. Chem. 279, 27599–27606.

    Article  PubMed  CAS  Google Scholar 

  14. Chaikoff, I. L., Bloom, B., Siperstein, M. D., Kiyasu, J. Y., Reinhardt, W. O., et al. (1952) C14-cholesterol I: Lymphatic transport of absorbed cholesterol-4-C14. J. Biol. Chem. 194, 407–412.

    PubMed  CAS  Google Scholar 

  15. Heider, J. G., Pickens, C. E., and Kelly, L. A. (1983) Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57-118 in the rabbit. J. Lipid Res. 24, 1127–1134.

    PubMed  CAS  Google Scholar 

  16. Clark, S. B. and Tercyak, A. M. (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function. J. Lipid Res. 25, 148–159.

    PubMed  CAS  Google Scholar 

  17. Gallo, L. L., Wadsworth, J. A., and Vahouny, G. V. (1987) Normal cholesterol absorption in rats deficient in intestinal acyl coenzyme A:cholesterol acyltransferase activity. J. Lipid Res. 28, 381–387.

    PubMed  CAS  Google Scholar 

  18. Buhman, K. K., Accad, M., Novak, S., Choi, R. S., Wong, J. S., et al. (2000) resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat. Med. 6, 1341–1347.

    Article  PubMed  CAS  Google Scholar 

  19. Yagu, H., Kitamine, T., Osuga, J., Tozawa, R., Chen, Z., et al. (2000) Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J. Biol. Chem. 275, 21324–21330.

    Article  Google Scholar 

  20. Leon, C., Hill, J. S., and Wasan, K. M. (2005) Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm. Res. 22, 1578–1588.

    Article  PubMed  CAS  Google Scholar 

  21. Rudel, L. L., Lee, R. G., and Parini, P. (2005) ACAT2 is a target for treatment of coronary heart disease associated with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 25, 1112–1118.

    Article  PubMed  CAS  Google Scholar 

  22. Lada, A. T., Davis, M., Kent, C., Chapman, J., Tomoda, H., et al. (2004) Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness. J. Lipid Res. 45, 378–386.

    Article  PubMed  CAS  Google Scholar 

  23. VanHeek, M., France, C. F., Compton, D. S., McLeon, R. L., Yumibe, N. P., et al. (1997) In vivo metabolism-based discovery of a potent absorption cholesterol inhibitor, SCH58235, in the rat, and rhesus monkey through the identification of the active metabolites of SCH48461. J. Pharmacol. Exp. Therap. 283, 157–163.

    CAS  Google Scholar 

  24. Altmann S. W., Davis, H. R., Zhu, L., Yao, X., Hoos, L. M., et al. (2004) Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia-Calvo, M., Lisnock, H. G., Bull, B. E., Hawes, D. A., Burnett, M. P., et al. (2005) The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc. Natl. Acad. Sci. U.S.A. 102, 8132–8137.

    Article  PubMed  CAS  Google Scholar 

  26. Ziajka, P. E., Reis, M., Kreul, S., and King., H. (2004) Initial low-density lipoprotein response to statin therapy predicts subsequent low-density lipoprotein response to the addition of ezetimibe. Am. J. Cardiol. 93, 779–780.

    Article  PubMed  CAS  Google Scholar 

  27. Richmond, B. L., Boileau, A. C., Zheng, S., Huggins, K. W., Gramholm, N. A., et al. (2001) Compensatory phospholipid digestion is required for cholesterol absorption in pancreatic phospholipase A(2)-deficient mice. Gastroenterology 120, 1193–1202.

    Article  PubMed  CAS  Google Scholar 

  28. Huggins, K. W., Boileau, A. C., and Hui, D. Y. (2002) Protection against diet-induced obesity and insulin resistance in group 1B PLA2 deficient mice. Am. J. Physiol. Endocrinol. Metab. 283, E994-E1001.

    PubMed  CAS  Google Scholar 

  29. Homan, R. and Hamelehle, K. L. (1998) Phospholipase A2 relieves phosphatidylcholine inhibition of micellar cholesterol absorption and transport by human intestinal cell line Caco-2. J. Lipid Res. 39, 1197–1209.

    PubMed  CAS  Google Scholar 

  30. Huggins, K. W., Camarota, L. M., Howles, P. N., and Hui, D. Y. (2003) Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J. Biol. Chem. 278, 42899–42905.

    Article  PubMed  CAS  Google Scholar 

  31. Mittendorf, B., Ostlund, R. E., Patterson, B. W., and Klein, S. (2001) Orlistat inhibits dietary cholesterol absorption. Obes. Res. 9, 599–604.

    Article  Google Scholar 

  32. Drew, B. S., Dixon, A. F., and Drew, J. B. (2007) Obesity management: update on orlistat. Vasc. Health Risk Manag. 3, 817–821.

    PubMed  CAS  Google Scholar 

  33. Quintão, E., Grundy, S. M., and Ahrens, E. H. (1971) An evaluation of four methods for measuring cholesterol absorption by the intestine in man. J. Lipid Res. 12, 221–232.

    PubMed  Google Scholar 

  34. Sanders, D. J., Minter, H. J., Howes, D., and Hepburn, P. A. (2000) The safety evaluation of phytosterol esters. Part 6. The comparative absorption and tissue distribution of phytosterols in the rat. Food Chem. Toxicol. 38, 485–491.

    Article  PubMed  CAS  Google Scholar 

  35. Igel, M., Giesa, U., Lutjohann, D., and von Bergmann, K. (2003) Comparison of the intestinal uptake of cholesterol, plant sterols, and stanols in mice. J. Lipid Res. 44, 533–538.

    Article  PubMed  CAS  Google Scholar 

  36. Kastelein, J. J., van Leuven, S. I., Burgess, L., Evans, G. W., Kuivenhoven, J. A., Barter, P. J., Revkin, J. H., Grobbee, D. E., Riley, W.A., Shear, C. L., Duggan, W. T., Bots, M. L. and RADIANCE 1 investigators. (2007) Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356, 1620–1630.

    Article  PubMed  CAS  Google Scholar 

  37. Forrester, J. S., Makkar, R., Shah, P. K. (2005) Increasing high-density lipoprotein cholesterol in dyslipidemia by cholesteryl ester transfer protein inhibition. Circulation 111, 1847–1854.

    Article  PubMed  CAS  Google Scholar 

  38. Tchoua, U., D'Souza, W., Mukhamedova, N., Blum, D., Niesor, E., Mizrahi, J., Maugeais, C., Sviridov, D. (2008 The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport. Cardiovasc. Res. 77, 732–739.

    Article  PubMed  CAS  Google Scholar 

  39. Post, S. M., de Crom, R., van Haperen, R., van Tol, A., and Princen, H. M. (2003) Increased fecal bile acid excretion in transgenic mice with elevated expression of human phospho lipid transfer protein. Arterioscler. Thromb. Vasc. Biol. 23, 892–897.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, Y. Z., Zanotti, I., Reilly, M. P., Glick, J. M., Rothblat, G. H., et al. (2003) Overexpression of apolipoprotein A-I promotes reverse cholesterol transport from macrophages to feces in vivo. Circulation 108, 661–663.

    Article  PubMed  CAS  Google Scholar 

  41. Carter C. P., Howles, P. N., and Hui, D. Y. (1997) Genetic variation in cholesterol absorption efficiency among inbred strains of mice. J Nutr. 127, 1344–1348.

    PubMed  CAS  Google Scholar 

  42. Zilversmit, D. B. and Hughes, L. B. (1974) Validation of a dual-isotope plasma ratio for measurement of cholesterol absorption in rats. J. Lipid Res. 15, 465–473.

    PubMed  CAS  Google Scholar 

  43. Millar, J. S., Cromley, D. A., McCoy, M. G., Rader, D. J., and Billheimer, J. T. (2005) Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. J. Lipid Res. 46, 2023–2028.

    Article  PubMed  CAS  Google Scholar 

  44. Jandacek, R. J., Heubi, J. E., and Tso, P. (2004) A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology 127, 139–144.

    Article  PubMed  CAS  Google Scholar 

  45. LaBonté, E. D., Camarota, L. M., Rojas, J. C., Jandacek R. J., Gilham, D.E., et al. (2008) Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1 -/- mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G776-G783.

    Article  PubMed  Google Scholar 

  46. Osono, Y., Woollett, L. A., Herz, J., and Dietschy, J. M. (1995) Role of the low density lipoprotein receptor in the flux of cholesterol across the tissues of the mouse. J. Clin. Invest. 95, 1124–1132.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Howles, P.N. (2010). Cholesterol Absorption and Metabolism. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 602. Humana Press. https://doi.org/10.1007/978-1-60761-058-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-058-8_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-057-1

  • Online ISBN: 978-1-60761-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics