Skip to main content

Protein Structure Prediction

  • Protocol
Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 453))

Abstract

Protein structure prediction has matured over the past few years to the point that even fully automated methods can provide reasonably accurate three-dimensional models of protein structures. However, until now it has not been possible to develop programs able to perform as well as human experts, who are still capable of systematically producing better models than automated servers. Although the precise details of protein structure prediction procedures are different for virtually every protein, this chapter describes a generic procedure to obtain a three-dimensional protein model starting from the amino acid sequence. This procedure takes advantage both of programs and servers that have been shown to perform best in blind tests and of the current knowledge about evolutionary relationships between proteins, gained from detailed analyses of protein sequence, structure, and functional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moult, J., Pedersen, J. T., Judson, R., et al. (1995) A large-scale experiment to assess protein structure prediction methods. Proteins 23, ii–v.

    PubMed  CAS  Google Scholar 

  2. Moult, J., Hubbard, T., Bryant, S. H., et al. (1997) Critical assessment of methods of protein structure prediction (CASP): round II. Proteins Suppl. 1, 2–6.

    PubMed  Google Scholar 

  3. Moult, J., Hubbard, T., Fidelis, K., et al. (1999) Critical assessment of methods of protein structure prediction (CASP): round III. Proteins Suppl. 3, 2–6.

    PubMed  Google Scholar 

  4. Moult, J., Fidelis, K., Zemla, A., et al. (2001) Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins Suppl. 5, 2–7.

    PubMed  Google Scholar 

  5. Moult, J., Fidelis, K., Zemla, A., et al. (2003) Critical assessment of methods of protein structure prediction (CASP): round V. Proteins 53, Suppl. 6, 334–339.

    PubMed  CAS  Google Scholar 

  6. Moult, J., Fidelis, K., Rost, B., et al. (2005) Critical assessment of methods of protein structure prediction (CASP): round 6. Proteins 61, Suppl. 7, 3–7.

    PubMed  CAS  Google Scholar 

  7. Fischer, D., Barret, C., Bryson, K., et al. (1999) CAFASP-1: critical assessment of fully automated structure prediction methods. Proteins Suppl. 3, 209–217.

    PubMed  Google Scholar 

  8. Fischer, D., Elofsson, A., Rychlewski, L., et al. (2001) CAFASP2: the second critical assessment of fully automated structure prediction methods. Proteins Suppl. 5, 171–183.

    PubMed  Google Scholar 

  9. Fischer, D., Rychlewski, L., Dunbrack, R. L., Jr., et al. (2003) CAFASP3: the third critical assessment of fully automated structure prediction methods. Proteins 53, Suppl. 6, 503–516.

    PubMed  CAS  Google Scholar 

  10. Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res 28, 235–242.

    PubMed  CAS  Google Scholar 

  11. Rychlewski, L., Fischer, D. (2005) Live Bench-8: the large-scale, continuous assessment of automated protein structure prediction. Protein Sci 14, 240–245.

    PubMed  CAS  Google Scholar 

  12. Koh, I. Y., Eyrich, V. A., Marti-Renom, M. A., et al. (2003) EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res 31, 3311–3315.

    PubMed  CAS  Google Scholar 

  13. Chothia, C., Lesk, A. M. (1986) The relation between the divergence of sequence and structure in proteins. Embo J 5, 823–826.

    PubMed  CAS  Google Scholar 

  14. Tress, M., Ezkurdia, I., Grana, O., et al. (2005) Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 61, Suppl. 7, 27–45.

    PubMed  CAS  Google Scholar 

  15. Bowie, J. U., Luthy, R., Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170.

    PubMed  CAS  Google Scholar 

  16. Jones, D. T., Taylor, W. R., Thornton, J. M. (1992) A new approach to protein fold recognition. Nature 358, 86–89.

    PubMed  CAS  Google Scholar 

  17. Sippl, M. J., Weitckus, S. (1992) Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations. Proteins 13, 258–271.

    PubMed  CAS  Google Scholar 

  18. Jones, D. T. (1997) Successful ab initio prediction of the tertiary structure of NK-lysin using multiple sequences and recognized supersecondary structural motifs. Proteins Suppl. 1, 185–191.

    Google Scholar 

  19. Simons, K. T., Kooperberg, C., Huang, E., et al. (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268, 209–225.

    PubMed  CAS  Google Scholar 

  20. Sprague, E. R., Wang, C., Baker, D., et al. (2006) Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 4, e148.

    PubMed  Google Scholar 

  21. Galperin, M. Y. (2006) The Molecular Biology Database Collection: 2006 update. Nucleic Acids Res 34, D3–5.

    PubMed  CAS  Google Scholar 

  22. Fox, J. A., McMillan, S., Ouellette, B. F. (2006) A compilation of molecular biology web servers: 2006 update on the Bioinfor-matics Links Directory. Nucleic Acids Res 34, W3–5.

    PubMed  CAS  Google Scholar 

  23. Benson, D. A., Boguski, M. S., Lipman, D. J., et al. (1997) GenBank. Nucleic Acids Res 25, 1–6.

    PubMed  CAS  Google Scholar 

  24. Wu, C. H., Apweiler, R., Bairoch, A., et al. (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34, D187–191.

    PubMed  CAS  Google Scholar 

  25. Coutinho, P. M., Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering. H.J. Gilbert, G. Davies, B. Henrissat and B. Svensson eds., The Royal Society of Chemistry, Cambridge, UK, pp. 3–12.

    Google Scholar 

  26. Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    PubMed  CAS  Google Scholar 

  27. LoVerde, P. T., Hirai, H., Merrick, J. M., et al. (2004) Schistosoma mansoni genome project: an update. Parasitol Int 53, 183–192.

    PubMed  CAS  Google Scholar 

  28. Andreeva, A., Howorth, D., Brenner, S. E., et al. (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32, D226–229.

    PubMed  CAS  Google Scholar 

  29. Pearl, F., Todd, A., Sillitoe, I., et al. (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33, D247–251.

    PubMed  CAS  Google Scholar 

  30. Holm, L., Ouzounis, C., Sander, C., et al. (1992) A database of protein structure families with common folding motifs. Protein Sci 1, 1691–1698.

    PubMed  CAS  Google Scholar 

  31. Holm, L., Sander, C. (1997) Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Res 25, 231–234.

    PubMed  CAS  Google Scholar 

  32. Mizuguchi, K., Deane, C. M., Blundell, T. L., et al. (1998) HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci 7, 2469–2471.

    PubMed  CAS  Google Scholar 

  33. Gasteiger, E., Gattiker, A., Hoogland, C., et al. (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784–3788.

    PubMed  CAS  Google Scholar 

  34. Smith, R. F., Wiese, B. A., Wojzynski, M. K., et al. (1996) BCM Search Launcher— an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res 6, 454–462.

    PubMed  CAS  Google Scholar 

  35. Stothard, P. (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28, 1102, 1104.

    PubMed  CAS  Google Scholar 

  36. Janin, J. (2005) Assessing predictions of protein-protein interaction: the CAPRI experiment. Protein Sci 14, 278–283.

    PubMed  CAS  Google Scholar 

  37. Janin, J., Henrick, K., Moult, J., et al. (2003) CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52, 2–9.

    PubMed  CAS  Google Scholar 

  38. Tai, C. H., Lee, W. J., Vincent, J. J., et al. (2005) Evaluation of domain prediction in CASP6. Proteins 61, Suppl. 7, 183–192.

    PubMed  CAS  Google Scholar 

  39. Kim, D. E., Chivian, D., Malmstrom, L., et al. (2005) Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins 61, Suppl. 7, 193– 200.

    PubMed  CAS  Google Scholar 

  40. Suyama, M., Ohara, O. (2003) DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics 19, 673–674.

    PubMed  CAS  Google Scholar 

  41. Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., et al. (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33, D192–196.

    PubMed  CAS  Google Scholar 

  42. Finn, R. D., Mistry, J., Schuster-Bockler, B., et al. (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34, D247–251.

    PubMed  CAS  Google Scholar 

  43. Letunic, I., Copley, R. R., Pils, B., et al. (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34, D257–260.

    PubMed  CAS  Google Scholar 

  44. Bru, C., Courcelle, E., Carrere, S., et al.(2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res 33, D212–215.

    PubMed  CAS  Google Scholar 

  45. Mulder, N. J., Apweiler, R., Attwood, T. K., et al. (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33, D201–205.

    PubMed  CAS  Google Scholar 

  46. Hulo, N., Bairoch, A., Bulliard, V., et al. (2006) The PROSITE database. Nucleic Acids Res 34, D227–230.

    PubMed  CAS  Google Scholar 

  47. Gough, J., Chothia, C. (2002) SUPER-FAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 30, 268–272.

    PubMed  CAS  Google Scholar 

  48. Madera, M., Vogel, C., Kummerfeld, S. K., et al. (2004) The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res 32, D235–239.

    PubMed  CAS  Google Scholar 

  49. Jin, Y., Dunbrack, R. L., Jr. (2005) Assessment of disorder predictions in CASP6. Proteins 61, Suppl. 7, 167–175.

    PubMed  CAS  Google Scholar 

  50. Obradovic, Z., Peng, K., Vucetic, S., et al. (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61, Suppl. 7, 176–182.

    PubMed  CAS  Google Scholar 

  51. Peng, K., Radivojac, P., Vucetic, S., et al.(2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinfor-matics 7, 208.

    Google Scholar 

  52. Cheng, J., Sweredoski, M., Baldi, P. (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Mining Knowl Disc 11, 213–222.

    Google Scholar 

  53. Dosztanyi, Z., Csizmok, V., Tompa, P., et al.(2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434.

    PubMed  CAS  Google Scholar 

  54. Vullo, A., Bortolami, O., Pollastri, G., et al. (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res 34, W164–168.

    PubMed  CAS  Google Scholar 

  55. Ward, J. J., Sodhi, J. S., McGuffin, L. J., et al. (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337, 635–645.

    PubMed  CAS  Google Scholar 

  56. Bryson, K., McGuffin, L. J., Marsden, R. L., et al. (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33, W36–38.

    PubMed  CAS  Google Scholar 

  57. Krogh, A., Larsson, B., von Heijne, G., et al. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–580.

    PubMed  CAS  Google Scholar 

  58. Rost, B., Yachdav, G., Liu, J. (2004) The PredictProtein server. Nucleic Acids Res 32, W321–326.

    PubMed  CAS  Google Scholar 

  59. Bagos, P. G., Liakopoulos, T. D., Spyro-poulos, I. C., et al. (2004) PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. 32, W400–404.

    PubMed  CAS  Google Scholar 

  60. Natt, N. K., Kaur, H., Raghava, G. P. (2004) Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Proteins 56, 11–18.

    PubMed  CAS  Google Scholar 

  61. Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195–202.

    PubMed  CAS  Google Scholar 

  62. Karplus, K., Barrett, C., Hughey, R. (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856.

    PubMed  CAS  Google Scholar 

  63. Pollastri, G., McLysaght, A. (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719–1720.

    PubMed  CAS  Google Scholar 

  64. Cuff, J. A., Barton, G. J. (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502–511.

    PubMed  CAS  Google Scholar 

  65. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., et al. (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892–893.

    PubMed  CAS  Google Scholar 

  66. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    PubMed  CAS  Google Scholar 

  67. Tress, M., Tai, C. H., Wang, G., et al. (2005) Domain definition and target classification for CASP6. Proteins 61, Suppl. 7, 8–18.

    PubMed  CAS  Google Scholar 

  68. Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183, 63–98.

    PubMed  CAS  Google Scholar 

  69. Pearson, W. R. (1995) Comparison of methods for searching protein sequence databases. Protein Sci 4, 1145–1160.

    PubMed  CAS  Google Scholar 

  70. Park, J., Karplus, K., Barrett, C., et al. (1998) Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. J Mol Biol 284, 1201–1210.

    PubMed  CAS  Google Scholar 

  71. Eddy, S. R. (1996) Hidden Markov models. Curr Opin Struct Biol 6, 361–365.

    PubMed  CAS  Google Scholar 

  72. Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics 14, 755–763.

    PubMed  CAS  Google Scholar 

  73. Madera, M., Gough, J. (2002) A comparison of profile hidden Markov model procedures for remote homology detection. Nucleic Acids Res 30, 4321–4328.

    PubMed  CAS  Google Scholar 

  74. Karplus, K., Karchin, R., Draper, J., et al. (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53, Suppl. 6, 491–496.

    PubMed  CAS  Google Scholar 

  75. Karplus, K., Katzman, S., Shackleford, G., et al. (2005) SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61, Suppl. 7, 135–142.

    PubMed  CAS  Google Scholar 

  76. Schaffer, A. A., Wolf, Y. I., Ponting, C. P., et al. (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15, 1000–1011.

    PubMed  CAS  Google Scholar 

  77. Ohlson, T., Wallner, B., Elofsson, A. (2004) Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods. Proteins 57, 188–197.

    PubMed  CAS  Google Scholar 

  78. Yona, G., Levitt, M. (2002) Within the twilight zone: a sensitive profile-profile comparison tool based on information theory. J Mol Biol 315, 1257–1275.

    PubMed  CAS  Google Scholar 

  79. von Ohsen, N., Sommer, I., Zimmer, R. (2003) Profile-profile alignment: a powerful tool for protein structure prediction. Pac Symp Biocomput 252–263.

    Google Scholar 

  80. von Ohsen, N., Sommer, I., Zimmer, R., et al. (2004) Arby: automatic protein structure prediction using profile-profile alignment and confidence measures. Bioin-formatics 20, 2228–2235.

    Google Scholar 

  81. Sadreyev, R., Grishin, N. (2003) COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance. J Mol Biol 326, 317–336.

    PubMed  CAS  Google Scholar 

  82. Mittelman, D., Sadreyev, R., Grishin, N. (2003) Probabilistic scoring measures for profile-profile comparison yield more accurate short seed alignments. Bioinformatics 19, 1531–1539.

    PubMed  CAS  Google Scholar 

  83. Sadreyev, R. I., Baker, D., Grishin, N. V. (2003) Profile-profile comparisons by COMPASS predict intricate homologies between protein families. Protein Sci 12, 2262–2272.

    PubMed  CAS  Google Scholar 

  84. Heger, A., Holm, L. (2001) Picasso: generating a covering set of protein family profiles. Bioinformatics 17, 272–279.

    PubMed  CAS  Google Scholar 

  85. Edgar, R. C., Sjolander, K. (2004) COACH: profile-profile alignment of protein families using hidden Markov models. Bioinformat-ics 20, 1309–1318.

    CAS  Google Scholar 

  86. Pietrokovski, S. (1996) Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res 24, 3836–3845.

    PubMed  CAS  Google Scholar 

  87. Jaroszewski, L., Rychlewski, L., Li, Z., et al. (2005) FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33, W284–288.

    PubMed  CAS  Google Scholar 

  88. Tomii, K., Akiyama, Y. (2004) FORTE: a profile-profile comparison tool for protein fold recognition. Bioinformatics 20, 594–595.

    PubMed  CAS  Google Scholar 

  89. Ginalski, K., Pas, J., Wyrwicz, L. S., et al. (2003) ORFeus: detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res 31, 3804–3807.

    PubMed  CAS  Google Scholar 

  90. Soding, J., Biegert, A., Lupas, A. N. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33, W244–248.

    PubMed  Google Scholar 

  91. Kabsch, W., Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    PubMed  CAS  Google Scholar 

  92. Sippl, M. J. (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol 5, 229–235.

    PubMed  CAS  Google Scholar 

  93. Kelley, L. A., MacCallum, R. M., Sternberg, M. J. (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299, 499–520.

    PubMed  CAS  Google Scholar 

  94. Jones, D. T. (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287, 797–815.

    PubMed  CAS  Google Scholar 

  95. McGuffin, L. J., Bryson, K., Jones, D. T. (2000) The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405.

    PubMed  CAS  Google Scholar 

  96. Zhang, Y., Arakaki, A. K., Skolnick, J. (2005) TASSER: an automated method for the prediction of protein tertiary structures in CASP6. Proteins 61, Suppl. 7, 91–98.

    PubMed  CAS  Google Scholar 

  97. Skolnick, J., Kihara, D., Zhang, Y. (2004) Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins 56, 502–518.

    PubMed  CAS  Google Scholar 

  98. Shi, J., Blundell, T. L., Mizuguchi, K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310, 243–257.

    PubMed  CAS  Google Scholar 

  99. Xu, J., Li, M., Kim, D., et al. (2003) RAPTOR: optimal protein threading by linear programming. J Bioinform Comput Biol 1, 95–117.

    PubMed  CAS  Google Scholar 

  100. Tang, C. L., Xie, L., Koh, I. Y., et al. (2003) On the role of structural information in remote homology detection and sequence alignment: new methods using hybrid sequence profiles. J Mol Biol 334, 1043–1062.

    PubMed  CAS  Google Scholar 

  101. Teodorescu, O., Galor, T., Pillardy, J., et al. (2004) Enriching the sequence substitution matrix by structural information. Proteins 54, 41–48.

    PubMed  CAS  Google Scholar 

  102. Zhou, H., Zhou, Y. (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins 55, 1005–1013.

    PubMed  CAS  Google Scholar 

  103. Zhou, H., Zhou, Y. (2005) SPARKS 2 and SP3 servers in CASP6. Proteins 61, Suppl. 7, 152–156.

    PubMed  CAS  Google Scholar 

  104. Zhou, H., Zhou, Y. (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58, 321–328.

    PubMed  CAS  Google Scholar 

  105. Thompson, J. D., Higgins, D. G., Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.

    PubMed  CAS  Google Scholar 

  106. Notredame, C., Higgins, D. G., Heringa, J. (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–217.

    PubMed  CAS  Google Scholar 

  107. Thompson, J. D., Gibson, T. J., Plewniak, F., et al. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.

    PubMed  CAS  Google Scholar 

  108. Crooks, G. E., Hon, G., Chandonia, J. M., et al. (2004) WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.

    PubMed  CAS  Google Scholar 

  109. Sonnhammer, E. L., Hollich, V. (2005) Scoredist: a simple and robust protein sequence distance estimator. BMC Bioin-formatics 6, 108.

    Google Scholar 

  110. Galtier, N., Gouy, M., Gautier, C. (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.

    PubMed  CAS  Google Scholar 

  111. Parry-Smith, D. J., Payne, A. W., Michie, A. D., et al. (1998) CINEMA—a novel colour INteractive editor for multiple alignments. Gene 221, GC57–63.

    PubMed  CAS  Google Scholar 

  112. Ginalski, K., von Grotthuss, M., Grishin, N. V., et al. (2004) Detecting distant homol-ogy with Meta-BASIC. Nucleic Acids Res 32, W576–581.

    PubMed  CAS  Google Scholar 

  113. Xu, Y., Xu, D., Gabow, H. N. (2000) Protein domain decomposition using a graph-theoretic approach. Bioinformatics 16, 1091–1104.

    PubMed  CAS  Google Scholar 

  114. Guo, J. T., Xu, D., Kim, D., et al. (2003) Improving the performance of Domain-Parser for structural domain partition using neural network. Nucleic Acids Res 31, 944–952.

    PubMed  CAS  Google Scholar 

  115. Alexandrov, N., Shindyalov, I. (2003) PDP: protein domain parser. Bioinformatics 19, 429–430.

    PubMed  CAS  Google Scholar 

  116. Todd, A. E., Orengo, C. A., Thornton, J. M. (1999) DOMPLOT: a program to generate schematic diagrams of the structural domain organization within proteins, annotated by ligand contacts. Protein Eng 12, 375–379.

    PubMed  CAS  Google Scholar 

  117. Zemla, A. (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31, 3370–3374.

    PubMed  CAS  Google Scholar 

  118. Holm, L., Park, J. (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567.

    PubMed  CAS  Google Scholar 

  119. Ortiz, A. R., Strauss, C. E., Olmea, O. (2002) MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci 11, 2606–2621.

    PubMed  CAS  Google Scholar 

  120. Gibrat, J. F., Madej, T., Br yant, S. H. (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 6, 377–385.

    PubMed  CAS  Google Scholar 

  121. Shindyalov, I. N., Bourne, P. E. (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739–747.

    PubMed  CAS  Google Scholar 

  122. Orengo, C. A., Taylor, W. R. (1996) SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol 266, 617–635.

    PubMed  CAS  Google Scholar 

  123. Krissinel, E., Henrick, K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 2256–2268.

    PubMed  CAS  Google Scholar 

  124. Yang, A. S., Honig, B. (1999) Sequence to structure alignment in comparative modeling using PrISM. Proteins Suppl. 3, 66–72.

    PubMed  Google Scholar 

  125. Lupyan, D., Leo-Macias, A., Ortiz, A. R. (2005) A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21, 3255–3263.

    PubMed  CAS  Google Scholar 

  126. Ye, Y., Godzik, A. (2005) Multiple flexible structure alignment using partial order graphs. Bioinformatics 21, 2362–2369.

    PubMed  CAS  Google Scholar 

  127. Hill, E. E., Morea, V., Chothia, C. (2002) Sequence conservation in families whose members have little or no sequence similarity: the four-helical cytokines and cyto-chromes. J Mol Biol 322, 205–233.

    PubMed  CAS  Google Scholar 

  128. Chothia, C., Jones, E. Y. (1997) The molecular structure of cell adhesion molecules. Annu Rev Biochem 66, 823–862.

    PubMed  CAS  Google Scholar 

  129. Hill, E., Broadbent, I. D., Chothia, C., et al. (2001) Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster. J Mol Biol 305, 1011–1024.

    PubMed  CAS  Google Scholar 

  130. Chothia, C., Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196, 901–917.

    PubMed  CAS  Google Scholar 

  131. Chothia, C., Lesk, A. M., Tramontano, A., et al. (1989) Conformations of immu-noglobulin hypervariable regions. Nature 342, 877–883.

    PubMed  CAS  Google Scholar 

  132. Al-Lazikani, B., Lesk, A. M., Chothia, C. (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273, 927–948.

    PubMed  CAS  Google Scholar 

  133. Morea, V., Tramontano, A., Rustici, M., et al. (1998) Conformations of the third hypervariable region in the VH domain of immunoglobulins. J Mol Biol 275, 269–294.

    PubMed  CAS  Google Scholar 

  134. Mizuguchi, K., Deane, C. M., Blundell, T. L., et al. (1998) JOY: protein sequence-structure representation and analysis. Bio-informatics 14, 617–623.

    CAS  Google Scholar 

  135. Hubbard, S. J., Thornton, J. M., (1993) NACCESS. Department of Biochemistry and Molecular Biology, University College London.

    Google Scholar 

  136. McDonald, I. K., Thornton, J. M. (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238, 777–793.

    PubMed  CAS  Google Scholar 

  137. Morris, A. L., MacArthur, M. W., Hutch-inson, E. G., et al. (1992) Stereochemical quality of protein structure coordinates. Proteins 12, 345–364.

    PubMed  CAS  Google Scholar 

  138. Laskowski, R. A., MacArthur, M. W., Moss, D. S., et al. (1993) PROCHECK: a program to check the stereochemical quality of protein structures J Appl Cryst 26, 283–291.

    CAS  Google Scholar 

  139. Wallace, A. C., Laskowski, R. A., Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-lig-and interactions. Protein Eng 8, 127–134.

    PubMed  CAS  Google Scholar 

  140. Laskowski, R. A., Hutchinson, E. G., Michie, A. D., et al. (1997) PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22, 488–490.

    PubMed  CAS  Google Scholar 

  141. Sasin, J. M., Bujnicki, J. M. (2004) COLO-RADO3D, a web server for the visual analysis of protein structures. Nucleic Acids Res 32, W586–589.

    PubMed  CAS  Google Scholar 

  142. Landau, M., Mayrose, I., Rosenberg, Y., et al. (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33, W299–302.

    PubMed  CAS  Google Scholar 

  143. Guex, N., Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    PubMed  CAS  Google Scholar 

  144. Sayle, R. A., Milner-White, E. J. (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20, 374.

    PubMed  CAS  Google Scholar 

  145. Martz, E. (2002) Protein Explorer: easy yet powerful macromolecular visualization. Trends Biochem Sci 27, 107–109.

    PubMed  CAS  Google Scholar 

  146. Wang, Y., Geer, L. Y., Chappey, C., et al. (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25, 300–302.

    PubMed  CAS  Google Scholar 

  147. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8, 52–56.

    PubMed  CAS  Google Scholar 

  148. Koradi, R., Billeter, M., Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51–55, 29–32.

    PubMed  CAS  Google Scholar 

  149. Humphrey, W., Dalke, A., Schulten, K. (1996) VMD: visual molecular dynamics. J Mol Graph 14, 33–38, 27–38.

    PubMed  CAS  Google Scholar 

  150. Tramontano, A., Chothia, C., Lesk, A. M. (1990) Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol 215, 175–182.

    PubMed  CAS  Google Scholar 

  151. Sibanda, B. L., Thornton, J. M. (1985) Beta-hairpin families in globular proteins. Nature 316, 170–174.

    PubMed  CAS  Google Scholar 

  152. Sibanda, B. L., Blundell, T. L., Thornton, J. M. (1989) Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 206, 759–777.

    PubMed  CAS  Google Scholar 

  153. Bruccoleri, R. E. (2000) Ab initio loop modeling and its application to homology modeling. Methods Mol Biol 143, 247–264.

    PubMed  CAS  Google Scholar 

  154. Xiang, Z., Soto, C. S., Honig, B. (2002) Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc Natl Acad Sci U S A 99, 7432–7437.

    PubMed  CAS  Google Scholar 

  155. Tosatto, S. C., Bindewald, E., Hesser, J., et al. (2002) A divide and conquer approach to fast loop modeling. Protein Eng 15, 279–286.

    PubMed  CAS  Google Scholar 

  156. Fiser, A., Sali, A. (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19, 2500–2501.

    PubMed  CAS  Google Scholar 

  157. Canutescu, A. A., Shelenkov, A. A., Dun-brack, R. L., Jr. (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12, 2001–2014.

    PubMed  CAS  Google Scholar 

  158. Hung, L. H., Ngan, S. C., Liu, T., et al. (2005) PROTINFO: new algorithms for enhanced protein structure predictions. Nucleic Acids Res 33, W77–80.

    PubMed  CAS  Google Scholar 

  159. Xiang, Z., Honig, B. (2001) Extending the accuracy limits of prediction for side-chain conformations. J Mol Biol 311, 421–430.

    PubMed  CAS  Google Scholar 

  160. Marti-Renom, M. A., Stuart, A. C., Fiser, A., et al. (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291–325.

    PubMed  CAS  Google Scholar 

  161. Levitt, M. (1992) Accurate modeling of protein conformation by automatic segment matching.J Mol Biol 226, 507–533.

    PubMed  CAS  Google Scholar 

  162. Schwede, T., Kopp, J., Guex, N., et al. (2003) SWISS-MODEL: an automated protein homology-modeling server.Nucleic Acids Res 31, 3381–3385.

    PubMed  CAS  Google Scholar 

  163. Bates, P. A., Kelley, L. A., MacCallum, R. M., et al. (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM.Proteins Suppl. 5, 39–46.

    PubMed  Google Scholar 

  164. Petrey, D., Xiang, Z., Tang, C. L., et al. (2003) Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling.Proteins 53, Suppl. 6, 430–435.

    PubMed  CAS  Google Scholar 

  165. Koehl, P., Delarue, M. (1994) Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy.J Mol Biol 239, 249–275.

    PubMed  CAS  Google Scholar 

  166. Wallner, B., Elofsson, A. (2005) All are not equal: a benchmark of different homology modeling programs.Protein Sci 14, 1315–1327.

    PubMed  CAS  Google Scholar 

  167. Lund, O., Frimand, K., Gorodkin, J., et al. (1997) Protein distance constraints predicted by neural networks and probability density functions.Protein Eng 10, 1241–1248.

    PubMed  CAS  Google Scholar 

  168. Lambert, C., Leonard, N., De Bolle, X., et al. (2002) ESyPred3D: prediction of proteins 3D structures.Bioinformatics 18, 1250–1256.

    PubMed  CAS  Google Scholar 

  169. Hooft, R. W., Vriend, G., Sander, C., et al. (1996) Errors in protein structures.Nature 381, 272.

    PubMed  CAS  Google Scholar 

  170. Sippl, M. J. (1993) Recognition of errors in three-dimensional structures of proteins.Proteins 17, 355–362.

    PubMed  CAS  Google Scholar 

  171. Luthy, R., Bowie, J. U., Eisenberg, D. (1992) Assessment of protein models with three-dimensional profiles.Nature 356, 83–85.

    PubMed  CAS  Google Scholar 

  172. Melo, F., Devos, D., Depiereux, E., et al. (1997) ANOLEA: a www server to assess protein structures.Proc Int Conf Intell Syst Mol Biol 5, 187–190.

    PubMed  CAS  Google Scholar 

  173. Melo, F., Feytmans, E. (1998) Assessing protein structures with a non-local atomic interaction energy.J Mol Biol 277, 1141–1152.

    PubMed  CAS  Google Scholar 

  174. Wallner, B., Elofsson, A. (2003) Can correct protein models be identified?Protein Sci 12, 1073–1086.

    PubMed  CAS  Google Scholar 

  175. Wallner, B., Elofsson, A. (2006) Identification of correct regions in protein models using structural, alignment, and consensus information.Protein Sci 15, 900–913.

    PubMed  CAS  Google Scholar 

  176. Fischer, D. (2006) Servers for protein structure prediction.Current Opin Struct Biol 16, 178–182.

    CAS  Google Scholar 

  177. Dayringer, H. E., Tramontano, A., Sprang, S. R., et al. (1986) Interactive program for visualization and modeling of protein, nucleic acid and small molecules.J Mol Graph 4, 82–87.

    CAS  Google Scholar 

  178. Spoel, D. v. d., Lindahl, E., Hess, B., et al. (2005) GROMACS: fast, flexible and free.J Comp Chem 26, 1701–1718.

    Google Scholar 

  179. Phillips, J. C., Braun, R., Wang, W., et al. (2005) Scalable molecular dynamics with NAMD.J Comput Chem 26, 1781–1802.

    PubMed  CAS  Google Scholar 

  180. Simons, K. T., Ruczinski, I., Kooperberg, C., et al. (1999) Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins.Proteins. 34, 82–95.

    PubMed  CAS  Google Scholar 

  181. Bonneau, R., Tsai, J., Ruczinski, I., et al. (2001) Rosetta in CASP4: progress in ab initio protein structure prediction.Proteins Suppl. 5, 119–126.

    PubMed  Google Scholar 

  182. Bonneau, R., Strauss, C. E., Rohl, C. A., et al. (2002) De novo prediction of three-dimensional structures for major protein families.J Mol Biol 322, 65–78.

    PubMed  CAS  Google Scholar 

  183. Rohl, C. A., Strauss, C. E., Chivian, D., et al. (2004) Modeling structurally variable regions in homologous proteins with rosetta.Proteins 55, 656–677.

    PubMed  CAS  Google Scholar 

  184. Bradley, P., Malmstrom, L., Qian, B., et al. (2005) Free modeling with Rosetta in CASP6.Proteins 61, Suppl. 7, 128–134.

    PubMed  CAS  Google Scholar 

  185. Chivian, D., Kim, D. E., Malmstrom, L., et al. (2003) Automated prediction of CASP-5 structures using the Robetta server.Proteins 53, Suppl. 6, 524–533.

    PubMed  CAS  Google Scholar 

  186. Chivian, D., Kim, D. E., Malmstrom, L., et al. (2005) Prediction of CASP6 structures using automated Robetta protocols.Proteins 61, Suppl. 6, 157–166.

    PubMed  CAS  Google Scholar 

  187. Kim, D. E., Chivian, D., Baker, D. (2004) Protein structure prediction and analysis using the Robetta server.Nucleic Acids Res 32, W526–531.

    PubMed  CAS  Google Scholar 

  188. Vincent, J. J., Tai, C. H., Sathyanarayana, B. K., et al. (2005) Assessment of CASP6 predictions for new and nearly new fold targets.Proteins 61, Suppl. 7, 67–83.

    PubMed  CAS  Google Scholar 

  189. Wang, G., Jin, Y., Dunbrack, R. L., Jr. (2005) Assessment of fold recognition predictions in CASP6.Proteins 61, Suppl. 7, 46–66.

    PubMed  CAS  Google Scholar 

  190. Jones, D. T., Bryson, K., Coleman, A., et al. (2005) Prediction of novel and analogous folds using fragment assembly and fold recognition.Proteins 61, Suppl. 7, 143–151.

    PubMed  CAS  Google Scholar 

  191. Kolinski, A., Bujnicki, J. M. (2005) Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models.Proteins 61, Suppl. 7, 84–90.

    PubMed  CAS  Google Scholar 

  192. Fujikawa, K., Jin, W., Park, S. J., et al. (2005) Applying a grid technology to protein structure predictor “ROKKY”.Stud Health Technol Inform 112, 27–36.

    PubMed  Google Scholar 

  193. Debe, D. A., Danzer, J. F., Goddard, W. A., et al. (2006) STRUCTFAST: protein sequence remote homology detection and alignment using novel dynamic programming and profile-profile scoring.Proteins 64, 960–967.

    PubMed  CAS  Google Scholar 

  194. Ginalski, K., Elofsson, A., Fischer, D., et al. (2003) 3D-Jury: a simple approach to improve protein structure predictions.Bio-informatics 19, 1015–1018.

    CAS  Google Scholar 

  195. Fischer, D. (2003) 3DS3 and 3DS5 3D-SHOTGUN meta-predictors in CAFASP3.Proteins 53, Suppl. 6, 517–523.

    PubMed  CAS  Google Scholar 

  196. Sasson, I., Fischer, D. (2003) Modeling three-dimensional protein structures for CASP5 using the 3D-SHOTGUN meta-predictors.Proteins 53, Suppl. 6, 389–394.

    PubMed  CAS  Google Scholar 

  197. Fischer, D. (2003) 3D-SHOTGUN: a novel, cooperative, fold-recognition meta-predictor.Proteins 51, 434–441.

    PubMed  CAS  Google Scholar 

  198. Fischer, D. (2000) Hybrid fold recognition: combining sequence derived properties with evolutionary information.Pac Symp Biocomput 119–130.

    Google Scholar 

  199. Lundstrom, J., Rychlewski, L., Bujnicki, J., et al. (2001) Pcons: a neural-network-based consensus predictor that improves fold recognition.Protein Sci 10, 2354–2362.

    PubMed  CAS  Google Scholar 

  200. Kurowski, M. A., Bujnicki, J. M. (2003) Gene-Silico protein structure prediction metaserver.Nucleic Acids Res 31, 3305–3307.

    PubMed  CAS  Google Scholar 

  201. Plaxco, K. W., Simons, K. T., Baker, D. (1998) Contact order, transition state placement and the refolding rates of single domain proteins.J Mol Biol 277, 985–994.

    PubMed  CAS  Google Scholar 

  202. Bonneau, R., Ruczinski, I., Tsai, J., et al. (2002) Contact order and ab initio protein structure prediction.Protein Sci 11, 1937–1944.

    PubMed  CAS  Google Scholar 

  203. Shortle, D., Simons, K. T., Baker, D. (1998) Clustering of low-energy conformations near the native structures of small proteins.Proc Natl Acad Sci U S A 95, 11158–11162.

    PubMed  CAS  Google Scholar 

  204. Venclovas, C., Margelevicius, M. (2005) Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment.Proteins 61, Suppl. 7, 99– 105.

    PubMed  CAS  Google Scholar 

  205. Kosinski, J., Gajda, M. J., Cymerman, I. A., et al. (2005) FRankenstein becomes a cyborg: the automatic recombination and realignment of fold recognition models in CASP6.Proteins 61, Suppl. 7, 106–113.

    PubMed  CAS  Google Scholar 

  206. Wallner, B., Fang, H., Elofsson, A. (2003) Automatic consensus-based fold recognition using Pcons, ProQ, and Pmodeller.Proteins 53, Suppl. 6, 534–541.

    PubMed  CAS  Google Scholar 

  207. Wallner, B., Elofsson, A. (2005) Pcons5: combining consensus, structural evaluation and fold recognition scores.Bioinformatics 21, 4248–4254.

    PubMed  CAS  Google Scholar 

  208. Douguet, D., Labesse, G. (2001) Easier threading through web-based comparisons and cross-validations.Bioinformatics 17, 752–753.

    PubMed  CAS  Google Scholar 

  209. Takeda-Shitaka, M., Terashi, G., Takaya, D., et al. (2005) Protein structure prediction in CASP6 using CHIMERA and FAMS.Proteins 61, Suppl. 7, 122–127.

    PubMed  CAS  Google Scholar 

  210. Kopp, J., Schwede, T. (2004) The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models.Nucleic Acids Res 32, D230–234.

    PubMed  CAS  Google Scholar 

  211. Pieper, U., Eswar, N., Braberg, H., et al. (2004) MODBASE, a database of annotated comparative protein structure models, and associated resources.Nucleic Acids Res 32, D217–222.

    PubMed  CAS  Google Scholar 

  212. Yamaguchi, A., Iwadate, M., Suzuki, E., et al. (2003) Enlarged FAMSBASE: protein 3D structure models of genome sequences for 41 species.Nucleic Acids Res 31, 463–468.

    PubMed  CAS  Google Scholar 

  213. Castrignano, T., De Meo, P. D., Coz-zetto, D., et al. (2006) The PMDB Protein Model Database.Nucleic Acids Res 34, D306–309.

    PubMed  CAS  Google Scholar 

  214. Dayhoff, M. O., Schwartz, R. M., Orcutt, B. C., (1978) A model of evolutionary change in proteins. InAtlas of Protein Sequence and Structure. M.O. Dayhoff, ed. National Biomedical Research Foundation, Washington, DC.

    Google Scholar 

  215. Henikoff, S., Henikoff, J. G. (1992) Amino acid substitution matrices from protein blocks.Proc Natl Acad Sci U S A 89, 10915–10919.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Claudia Bertonati, Gianni Colotti, Andrea Ilari, Romina Oliva, and Christine Vogel for manuscript reading and suggestions, and Julian Gough and Martin Madera for discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Al-Lazikani, B., Hill, E.E., Morea, V. (2008). Protein Structure Prediction. In: Keith, J.M. (eds) Bioinformatics. Methods in Molecular Biology™, vol 453. Humana Press. https://doi.org/10.1007/978-1-60327-429-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-429-6_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-428-9

  • Online ISBN: 978-1-60327-429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics