Skip to main content

Modulation of Lipoprotein Metabolism by Antisense Technology: Preclinical Drug Discovery Methodology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1027))

Abstract

Antisense oligonucleotides (ASOs) are a new class of specific therapeutic agents that alter the intermediary metabolism of mRNA, resulting in the suppression of disease-associated gene products. ASOs exert their pharmacological effects after hybridizing, via Watson-Crick base pairing, to a specific target RNA. If appropriately designed, this event results in the recruitment of RNase H, the degradation of targeted mRNA or pre-mRNA, and subsequent inhibition of the synthesis of a specific protein. A key advantage of the technology is the ability to selectively inhibit targets that cannot be modulated by traditional therapeutics such as structural proteins, transcription factors, and, of topical interest, lipoproteins. In this chapter, we will first provide an overview of antisense technology, then more specifically describe the status of lipoprotein-related genes that have been studied using the antisense platform, and finally, outline the general methodology required to design and evaluate the in vitro and in vivo efficacy of those drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  PubMed  CAS  Google Scholar 

  2. Crooke ST (1999) Molecular mechanism of action of antisense drugs. Biochim Biophys Acta 1489:31–44

    Article  PubMed  CAS  Google Scholar 

  3. Crooke ST (1998) Molecular mechanisms of antisense drugs: RNaseH. Antisense Nucleic Acid Drug Dev 8:133–134

    Article  PubMed  CAS  Google Scholar 

  4. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST (2004) Determination of the role of the human RNAse H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279:17181–17189

    Article  PubMed  CAS  Google Scholar 

  5. Lima W, Rose JB, Nichols JG, Wu H, Migawa MT, Wyrzykiewicz TK, Vasques G, Swayze EE, Crooke ST (2007) The positional influence of the helical geometry of the heteroduplex substrate on human RNase H1 catalysis. Mol Pharmacol 71:73–82

    Article  PubMed  CAS  Google Scholar 

  6. Lima W, Rose JB, Nichols JG, Wu H, Migawa MT, Wyrzykiewicz TK, Siwkowski AM, Crooke ST (2007) Human RNaseH1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 71:83–91

    Article  PubMed  CAS  Google Scholar 

  7. Lima W, Wu H, Crooke ST (2008) The RNase H mechanism. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 47–74

    Google Scholar 

  8. Henry SP, Geary RS, Yu R, Levin AA (2001) Drug properties of second generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Invest Drugs 2:1444–1449

    CAS  Google Scholar 

  9. Dean NM, Butler M, Monia BP, Manoharan M (2001) Pharmacology of 2′-O-(2-methoxyethyl) modified antisense oligonucleotides. In: Crooke ST (ed) Antisense technology: principles, strategies and applications. Marcel Dekker, Inc., New York, NY, pp 319–338

    Google Scholar 

  10. Zellweger T, Miyake H, Cooper S, Conklin BS, Monia BP, Gleave ME (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 298:934–940

    PubMed  CAS  Google Scholar 

  11. Kastelein JJP, Wedel MW, Baker BB, Su J, Bradley JD, Yu RZ, Chuang E, Graham MJ, Crooke RM (2006) Potent reduction of apolipoprotein B and low density lipoprotein cholesterol by short term administration of an antisense inhibitor of apolipoprotein B. Circulation 114:1729–1735

    Article  PubMed  CAS  Google Scholar 

  12. Crooke RM, Graham MJ, Lemonidis KM, Whipple CP, Koo S, Perera RJ (2005) An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res 46:872–884

    Article  PubMed  CAS  Google Scholar 

  13. Crooke RM (2005) Antisense oligonucleotides as therapeutics for hyperlipidaemias. Expert Opin Biol Ther 5:907–917

    Article  PubMed  CAS  Google Scholar 

  14. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nature 5:468–479

    CAS  Google Scholar 

  15. Sewell KL, Geary RS, Baker BF, Glover JM, Mant TG, Yu RZ, Tami JA, Dorr FA (2002) Phase I trial of ISIS 104838, a 2′ methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha. J Pharmacol Exp Ther 303:1334–1343

    Article  PubMed  CAS  Google Scholar 

  16. Geary RS, Khatsenko O, Bunker K, Crooke R, Moore M, Burckin T, Troung L, Sasmor H, Levin AA (2001) Absolute bioavailability of 2′-O-2-(methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats. J Pharmacol Exp Ther 296:898–904

    PubMed  CAS  Google Scholar 

  17. Crosby JR, Guha M, Tung D, Miller DA, Bender B, Condon TP, York-Defalco C, Geary RS, Monia BP, Karras JG, Gregory SA (2007) Inhaled CD86 antisense oligonucleotide suppresses pulmonary inflammation and airway hyper-responsiveness in allergic mice. J Pharmacol Exp Ther 321:938–946

    Article  PubMed  CAS  Google Scholar 

  18. Miner PB Jr, Geary RS, Matson J, Chuan E, Xia SM, Baker BF, Wedel MK (2006) Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. Aliment Pharmacol Ther 23:1427–1434

    Article  PubMed  CAS  Google Scholar 

  19. Zhang RW, Iyer RP, Yu D, Tan WT, Zhang XZ, Lu ZH, Zhao H, Agrawal S (1996) Pharmacokinetics and tissue disposition of chimeric oligodeoxynucleoside phosphorothioates in rats after intravenous administration. J Pharmacol Exp Ther 278:971–979

    PubMed  CAS  Google Scholar 

  20. Hardee GE, Tillman LG, Geary RS (2008) Routes and formulations for delivery of antisense oligonucleotides. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 217–236

    Google Scholar 

  21. Henry SP, Kim T-W, Kramer-Strickland K, Zanardi TA, Fey RA, Levin AA (2008) Toxicologic properties of phosphorothioate ­2′-methoxyethyl chimeric antisense inhibitors in animals and man. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 327–363

    Google Scholar 

  22. Henry SP, Stecker K, Brooks D, Monteith D, Conklin B, Bennett CF (2000) Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J Pharmacol Exp Ther 292:468–479

    PubMed  CAS  Google Scholar 

  23. Kwoh JT (2008) An overview of the clinical safety experience of first and second generation oligonucleotides. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 365–399

    Google Scholar 

  24. Geary RS, Bradley JD, Watanabe T, Kwon Y, Wedel M, van Lier JJ, VanVliet AA (2006) Lack of pharmacokinetic interaction for ISIS 113715, a 2′-O-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. Clin Pharmacokinet 45:789–801

    Article  PubMed  CAS  Google Scholar 

  25. Geary RS, Yu RZ, Siwkowski A, Levin AA (2008) Pharmacokinetic/pharmacodynamic properties of phosphorothioate 2′-O-(2-methoxyethyl)-modified antisense oligonucleotides in animals and man. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 236–305

    Google Scholar 

  26. Kane JP, Havel RJ (2001) Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2705–2716

    Google Scholar 

  27. Mahley RW, Bersott TP (2006) Drug therapy for hypercholesterolemia and dyslipidemia. In: Brunton LL (ed) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 933–966

    Google Scholar 

  28. Lloyd-Jones DM, Leip EP, Larson MG, D’Agostino RB, Beiser A, Wilson PWF, Wolf PA, Levy D (2006) Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113:791–798

    Article  PubMed  Google Scholar 

  29. Epstein JA, Rader DJ, Parmacek MS (2002) Perspective: cardiovascular disease in the postgenomic era-lessons learned and challenges ahead. Endocrinology 143:2045–2050

    Article  PubMed  CAS  Google Scholar 

  30. Davis RA, Hui TY (2001) 2000 George Lyman Duff memorial lecture. Atherosclerosis is a liver disease of the heart. Arterioscler Thromb Vasc Biol 21:887–898

    Article  PubMed  CAS  Google Scholar 

  31. Nabel EG (2003) Cardiovascular disease. N Engl J Med 349:60–72

    Article  PubMed  CAS  Google Scholar 

  32. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497

    Article  Google Scholar 

  33. Grundy SM, Cleeman JI, Bairey CN, Brewer HB, Clark LT, Hunninhake D, Pasternak RC, Smith SC, Sone NJ, Coordinating Committee of the National Cholesterol Education Program (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation 110:227–239

    Article  PubMed  Google Scholar 

  34. Knopp RH (1999) Drug treatment of lipid disorders. N Engl J Med 341:498–511

    Article  PubMed  CAS  Google Scholar 

  35. (1998) LIPID Study Group: prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339:1339–1357

    Google Scholar 

  36. Downs GR, Clearfield M, Weiss S (1998) Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of the AFCAPS/TEXCAPS (Air Forces/Texas Coronary Atherosclerosis Prevention Study). JAMA 279:1615–1622

    Article  PubMed  CAS  Google Scholar 

  37. Heart Protection Study Collaborative Group (2002) MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high risk individuals: a randomized placebo controlled trial. Lancet 360:7–22

    Article  Google Scholar 

  38. Olofsson S-O, Boren J (2005) Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 258:395–410

    Article  PubMed  CAS  Google Scholar 

  39. Merki E, Graham MJ, Mullick AE, Miller ER, Crooke RM, Pitas RE, Witztum JL, Tsimikas S (2008) Antisense oligonucleotide directed to human apolipoprotein-B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation 118:743–753

    Article  PubMed  CAS  Google Scholar 

  40. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Kornman KS, Witztum JL, Berger PB (2005) Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 353:46–57

    Article  PubMed  CAS  Google Scholar 

  41. Annurad E, Boffa MB, Koschinsky ML (2006) Lipoprotein(a): a unique risk factor for cardiovascular disease. Clin Lab Med 26:751–772

    Article  Google Scholar 

  42. Bobik A (2008) Apolipoprotein CIII and atherosclerosis: beyond effects on lipid metabolism. Circulation 118:702–704

    Article  PubMed  Google Scholar 

  43. Kawakami A, Osaka M, Tani M, Azuma H, Sacks FM, Shimokado K, Yoshida M (2008) Apolipoprotein CIII links hyperlipidemia with vascular cell dysfunction. Circulation 118:731–742

    Article  PubMed  CAS  Google Scholar 

  44. Scheffer PG, Teerlink T, Dekker JM, Bos G, Dijpels G, Diamant M, Kostense PJ, Stehouwer CD, Heine RJ (2008) Increased plasma apolipoprotein C-III concentration independently predicts cardiovascular mortality: the Hoorn Study. Clin Chem 54:1325–1330

    Article  PubMed  CAS  Google Scholar 

  45. Giorda CB, Avogaro A, Maggini M, Lombardo F, Mannucci E, Turco S, Alegiani SS, Raschetti R, Velussi M, Ferrannini E, DAI Study Group (2008) Recurrence of cardiovascular events in patients with type 2 diabetes: epidemiology and risk factors. Diabetes Care 31(11):2154–2159

    Article  PubMed  Google Scholar 

  46. Mitka M (2004) Guidelines: new lows for LDL target levels. JAMA 292:911–913

    Article  PubMed  CAS  Google Scholar 

  47. Rubins HB (2000) Triglycerides and coronary heart disease: implications of recent clinical trials. J Cardiovasc Risk 7:339–345

    PubMed  CAS  Google Scholar 

  48. Watts GF, Barrett PH, Chan DC (2008) HDL metabolism in context: looking on the bright side. Curr Opin Lipidol 19:395–404

    Article  PubMed  CAS  Google Scholar 

  49. deGoma EM, deGoma RL, Rader DJ (2008) Beyond high-density lipoprotein cholesterol levels. Evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol 51:2199–2211

    Article  PubMed  CAS  Google Scholar 

  50. McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, Steyn K, Sanderson JE, Hasani M, Volkova E, Kazmi K, Yusuf S, INTERHEART Study Investigators (2008) Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case controlled study. Lancet 372:224–233

    Article  PubMed  CAS  Google Scholar 

  51. Romero-Corral A, Somers VK, Lopez-Jimenez F (2008) Apolipoproteins: promising biomarkers for cardiovascular risk prediction. J Intern Med 264:1–3

    Article  PubMed  CAS  Google Scholar 

  52. El Harchaoui K, Akdim F, Stroes ES, Trip MD, Kastelein JJ (2008) Current and future pharmacologic options for the management of patients unable to achieve low-density lipoprotein-cholesterol goals with statins. Am J Cardiovasc Drugs 8:233–242

    Article  PubMed  CAS  Google Scholar 

  53. Athyros VG, Kakafika AI, Tziomalos K, Karagiannis A, Mihkailidis DP (2008) Antisense technology for the prevention or treatment of cardiovascular disease: the next blockbuster? Expert Opin Investig Drugs 17:969–972

    Article  PubMed  CAS  Google Scholar 

  54. Ito MK (2007) ISIS 301012 gene therapy for hypercholesterolemia: sense, antisense, or nonsense? Ann Pharmacother 41:1669–1678

    Article  PubMed  CAS  Google Scholar 

  55. Burnett JR (2006) Drug evaluation: ISIS 31012, an antisense oligonucleotide for the treatment of hypercholesterolemia. Curr Opin Mol Ther 8:461–467

    PubMed  CAS  Google Scholar 

  56. Crooke ST, Vickers T, Lima W, Hongjiang W (2008) Mechanisms of antisense drug action, an introduction. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 3–46

    Google Scholar 

  57. Bennett CF (2002) Efficiency of antisense oligonucleotide drug discovery. Antisense Nucleic Acid Drug Dev 12:215–224

    Article  PubMed  CAS  Google Scholar 

  58. Dean NM, Bennett CF (2003) Antisense oligonucleotide-based therapeutics for cancer. Oncogene 22:9087–9096

    Article  PubMed  CAS  Google Scholar 

  59. Freier SM, Watt AT (2008) Basic principles of antisense drug discovery. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 117–141

    Google Scholar 

  60. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    Article  PubMed  CAS  Google Scholar 

  61. Bennett CF (2008) Pharmacological properties of 2′-O-methoxyethyl-modified oligonucleotides. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 273–303

    Google Scholar 

  62. Swayze EE, Bhat B (2008) The medicinal chemistry of oligonucleotides. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 143–182

    Google Scholar 

  63. Monia BP, Yu RZ, Lima W, Siwkowski A (2008) Optimization of second-generation antisense drugs: going beyond generation 2.0. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 487–506

    Google Scholar 

  64. Crooke R, Baker B, Wedel M (2008) Cardiovascular therapeutic applications. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 601–639

    Google Scholar 

  65. Bell TA, Brown JM, Graham MJ, Lemonidis KM, Crooke RM, Rudel LL (2006) Liver-specific inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 with antisense oligonucleotides limits atherosclerosis development in apolipoprotein B100-only low-density lipoprotein receptor−/− mice. Arterioscler Thromb Vasc Biol 26:1814–1820

    Article  PubMed  CAS  Google Scholar 

  66. Brown JM, Bell TA, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM (2008) Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 283:10522–10534

    Article  PubMed  CAS  Google Scholar 

  67. Graham MJ, Lemonidis KM, Whipple CP, Subramaniam A, Monia BP, Crooke ST, Crooke RM (2007) Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 48:763–767

    Article  PubMed  CAS  Google Scholar 

  68. Zhang YL, Hernandez-Ono A, Weisberg S, Conlon D, Graham MJ, Crooke RM, Huang LS, Ginsberg HN (2006) Aberrant hepatic expression of PPAR γ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia and hepatic steatosis. J Biol Chem 281:37603–37615

    Article  PubMed  CAS  Google Scholar 

  69. Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS (2007) Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132:1947–1954

    Article  PubMed  CAS  Google Scholar 

  70. Geary RS, Yu RZ, Watanabe T, Henry SP, Hardee GE, Chappell A, Matson J, Sasmor H, Cummins L, Levin AA (2003) Pharmacokinetics of a tumor necrosis factor alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31:1419–1428

    Article  PubMed  CAS  Google Scholar 

  71. Geary RS, Watanabe TA, Truong L, Freier SA, Lesnik EA, Sioufi NB, Sasmor H, Manoharan M, Levin AA (2001) Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 296:890–897

    PubMed  CAS  Google Scholar 

  72. Yu R, Geary RS, Monteith DK, Matson J, Truong L, Fitchett J, Levin AA (2004) Tissue disposition of 2′-O-(2-methoxyethyl)-modified oligonucleotides in monkeys. J Pharm Sci 93:48–59

    Article  PubMed  CAS  Google Scholar 

  73. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  74. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103

    Article  PubMed  CAS  Google Scholar 

  75. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  76. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  77. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 12:5350–5354

    Article  Google Scholar 

  78. deFougerolles AR, Maraganore JM (2008) Discovery and development of RNAi therapeutics. In: Crooke ST (ed) Antisense drug technology. Principles, strategies and applications. CRC, Boca Raton, FL, pp 465–484

    Google Scholar 

  79. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  80. Krause BR, Princen HMG (1998) Lack of predictability of classical animal models for hypolipidemic activity: a good time for mice? Atherosclerosis 140:15–24

    Article  PubMed  CAS  Google Scholar 

  81. Zadelaar S, Kleeman R, Verschuren L, deVries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721

    Article  PubMed  CAS  Google Scholar 

  82. Grass DS, Saini U, Felkner RH, Wallace RE, Lao WJ, Young SG, Swanson ME (1995) Transgenic mice expressing both human apolipoprotein B and human CETP have a similar lipoprotein cholesterol distribution similar to that of normolipidemic humans. J Lipid Res 36:1082–1091

    PubMed  CAS  Google Scholar 

  83. Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, Rothblat GH, Rader DJ (2006) Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113:90–97

    Article  PubMed  CAS  Google Scholar 

  84. Arai T, Wang N, Bezouevski M, Welch C, Tall AR (1999) Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor B1 transgene. J Biol Chem 274:2366–2371

    Article  PubMed  CAS  Google Scholar 

  85. Mullick AE, Graham MJ, Fu W, York-DeFalco C, Crooke RM (2008) Antisense inhibition of apolipoprotein B ameliorated diet-induced hypercholesterolemia and reduced atherosclerosis in LDL receptor-deficient mice. Arteriosclerosis, Thrombosis and Vascular Biology 2008 Annual Conference, Atlanta, GA, p 345, 16–18 April

    Google Scholar 

  86. Chandler CE, Wilder DE, Pettini JL, Savoy YE, Petras SF, Chang G, Vincent J, Harwood HJ Jr (2003) CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and humans. J Lipid Res 44:1887–1901

    Article  PubMed  CAS  Google Scholar 

  87. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarlis A, Millar JS, Ikewaki K, Siegelman ES, Gregg RE, Rader DJ (2007) Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med 356:148–156

    Article  PubMed  CAS  Google Scholar 

  88. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169

    Article  PubMed  CAS  Google Scholar 

  89. Breslow JL (2000) Genetics of lipoprotein abnormalities associated with coronary heart disease susceptibility. Annu Rev Genet 34:233–254

    Article  PubMed  CAS  Google Scholar 

  90. Lunetta KL, D’Agostino RB, Karasik D, Benjamin EJ, Gui CY, Govindaraju R, Kiel DP, Kelly-Hayes M, Massaro JM, Pencina MJ, Seshadri S, Murabito JM (2007) Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet 19:8(Suppl 1):S13

    Article  Google Scholar 

  91. Holleboom AG, Vergeer M, Hovingh GK, Kastelein JJP, Kuivenhoven JA (2008) The value of HDL genetics. Curr Opin Lipidol 19:385–394

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Stanley T. Crooke and Sue Freier for their careful review of the manuscript, Tracy Reigle for her excellent help with figure production, and finally, Pamela Black for her expertise in producing the final document.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Crooke, R.M., Graham, M.J. (2013). Modulation of Lipoprotein Metabolism by Antisense Technology: Preclinical Drug Discovery Methodology. In: Freeman, L. (eds) Lipoproteins and Cardiovascular Disease. Methods in Molecular Biology, vol 1027. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-369-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-369-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-368-8

  • Online ISBN: 978-1-60327-369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics