Skip to main content

Integrated Tools for Biomolecular Sequence-Based Function Prediction as Exemplified by the ANNOTATOR Software Environment

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

Given the amount of sequence data available today, in silico function prediction, which often includes detecting distant evolutionary relationships, requires sophisticated bioinformatic workflows. The algorithms behind these workflows exhibit complex data structures; they need the ability to spawn subtasks and tend to demand large amounts of resources. Performing sequence analytic tasks by manually invoking individual function prediction algorithms having to transform between differing input and output formats has become increasingly obsolete. After a period of linking individual predictors using ad hoc scripts, a number of integrated platforms are finally emerging. We present the ANNOTATOR software environment as an advanced example of such a platform.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Wheeler, D. L. (2008) GenBank. Nucleic Acids Res 36, D25–D30, 10.1093/nar/gkm929.

    Article  CAS  PubMed  Google Scholar 

  2. Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., et al. (1997) The Complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462, 10.1126/science. 277.5331.1453.

    Article  CAS  PubMed  Google Scholar 

  3. Peña-Castillo, L., Hughes, T. R. (2007) Why are there still over 1000 uncharacterized yeast genes? Genetics 176, 7–14, 10.1534/genetics.107.074468.

    Article  PubMed  Google Scholar 

  4. Cserzo, M., Eisenhaber, F., Eisenhaber, B., Simon, I. (2004) TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics 20, 136–137.

    Article  CAS  PubMed  Google Scholar 

  5. Tusnády, G. E., Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–850.

    Article  PubMed  Google Scholar 

  6. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–580, 10.1006/jmbi.2000.4315.

    Article  CAS  PubMed  Google Scholar 

  7. Käll, L., Krogh, A., Sonnhammer, E. L. L. (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338, 1027–1036, 10.1016/j.jmb.2004.03.016.

    Article  PubMed  Google Scholar 

  8. Schneider, G., Neuberger, G., Wildpaner, M., Tian, S., Berezovsky, I., Eisenhaber, F. (2006) Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics 7, 164, 10.1186/1471-2105-7-164.

    Article  PubMed  Google Scholar 

  9. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  10. Wootton, J. C. (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18, 269–285.

    Article  CAS  PubMed  Google Scholar 

  11. Lupas, A., Van Dyke, M., Stock, J. (1991) Predicting coiled coils from protein sequences. Science 252, 1162–1164, 10.1126/science.252.5009.1162.

    Article  CAS  Google Scholar 

  12. Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian, C., Fuellen, G., Gilbert, J. G. R., Korf, I., Lapp, H., et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12, 1611–1618, 10.1101/gr.361602.

    Article  CAS  PubMed  Google Scholar 

  13. Stajich, J. E. (2007) An Introduction to BioPerl. Methods Mol Biol 406, 535–548.

    Article  CAS  PubMed  Google Scholar 

  14. Mangalam, H. (2002) The Bio* toolkits – a brief overview. Brief Bioinform 3, 296–302.

    Article  PubMed  Google Scholar 

  15. Rice, P., Longden, I., Bleasby, A. (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16, 276–277.

    Article  CAS  PubMed  Google Scholar 

  16. Misra, S., Crosby, M. A., Mungall, C. J., Matthews, B. B., Campbell, K. S., Hradecky, P., Huang, Y., Kaminker, J. S., Millburn, G. H., Prochnik, S. E., et al. (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3, RESEARCH0083.

    Google Scholar 

  17. Mungall, C. J., Misra, S., Berman, B. P., Carlson, J., Frise, E., Harris, N., Marshall, B., Shu, S., Kaminker, J. S., Prochnik, S. E., et al. (2002) An integrated computational pipeline and database to support whole-genome sequence annotation. Genome Biol 3, RESEARCH0081.

    Google Scholar 

  18. Meyer, F., Goesmann, A., McHardy, A. C., Bartels, D., Bekel, T., Clausen, J., Kalinowski, J., Linke, B., Rupp, O., Giegerich, R., et al. (2003) GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31, 2187–2195.

    Article  CAS  PubMed  Google Scholar 

  19. Letondal, C. (2001) A Web interface generator for molecular biology programs in Unix. Bioinformatics 17, 73–82.

    Article  CAS  PubMed  Google Scholar 

  20. Senger, M., Rice, P., Oinn, T. (2003) Soaplab – a unified Sesame door to analysis tools. In Proceedings of the UK e-Science, All Hands Meeting. Simon J Cox, pp. 509–513.

    Google Scholar 

  21. Gudgin, M., Hadley, M., Mendelsohn, N., Jean-Jaques, M., Nielsen, H. (2003) SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation. Available at: http://www.w3.org/TR/soap12-part1.

  22. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M. R., Wipat, A., et al. (2004) Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 3045–3054, 10.1093/bioinformatics/bth361.

    Article  CAS  PubMed  Google Scholar 

  23. Wilkinson, M. D., Senger, M., Kawas, E., Bruskiewich, R., Gouzy, J., Noirot, C. (2008) Interoperability with Moby 1.0–It’s better than sharing your toothbrush! Brief Bioinformatics, 10.1093/bib/bbn003, 10.1093/bib/bbn003.

    Google Scholar 

  24. Kawas, E., Senger, M., Wilkinson, M. D. (2006) BioMoby extensions to the Taverna workflow management and enactment software. BMC Bioinformatics 7, 523.

    Article  PubMed  Google Scholar 

  25. Shah, S. P., He, D. Y. M., Sawkins, J. N., Druce, J. C., Quon, G., Lett, D., Zheng, G. X. Y., Xu, T., Ouellette, B. F. F. (2004) Pegasys: software for executing and integrating analyses of biological sequences. BMC Bioinformatics 5, 40.

    Article  PubMed  Google Scholar 

  26. Tang, F., Chua, C. L., Ho, L., Lim, Y. P., Issac, P., Krishnan, A. (2005) Wildfire: distributed, Grid-enabled workflow construction and execution. BMC Bioinformatics 6, 69.

    Article  PubMed  Google Scholar 

  27. Lian, C. C., Tang, F., Issac, P., Krishnan, A. (2005) GEL: grid execution language. J Parallel Distr Com 65, 857–869.

    Article  Google Scholar 

  28. Eisenhaber, F. (2006) Prediction of protein function. In Discovering Biomolecular Mechanisms with Computational Biology. Springer, US, pp. 39–54.

    Chapter  Google Scholar 

  29. Promponas, V. J., Enright, A. J., Tsoka, S., Kreil, D. P., Leroy, C., Hamodrakas, S., Sander, C., Ouzounis, C. A. (2000) CAST: an iterative algorithm for the complexity analysis of sequence tracts. Complexity analysis of sequence tracts. Bioinformatics 16, 915–922.

    Article  CAS  PubMed  Google Scholar 

  30. Wootton, J. C. (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18, 269–285.

    Article  CAS  PubMed  Google Scholar 

  31. Dosztányi, Z., Csizmók, V., Tompa, P., Simon, I. (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347, 827–839, 10.1016/j.jmb.2005.01.071.

    Article  PubMed  Google Scholar 

  32. Eisenhaber, B., Bork, P., Eisenhaber, F. (1999) Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 292, 741–758, 10.1006/jmbi.1999.3069.

    Article  CAS  PubMed  Google Scholar 

  33. Eisenhaber, B., Wildpaner, M., Schultz, C. J., Borner, G. H. H., Dupree, P., Eisenhaber, F. (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133, 1691–1701, 10.1104/pp.103.023580.

    Article  CAS  PubMed  Google Scholar 

  34. Eisenhaber, B., Schneider, G., Wildpaner, M., Eisenhaber, F. (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337, 243–253, 10.1016/j.jmb.2004.01.025.

    Article  CAS  PubMed  Google Scholar 

  35. Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317, 541–557, 10.1006/jmbi.2002.5426.

    Article  CAS  PubMed  Google Scholar 

  36. Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J Mol Biol 317, 523–540, 10.1006/jmbi.2002.5425.

    Article  CAS  PubMed  Google Scholar 

  37. Maurer-Stroh, S., Eisenhaber, F. (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6, R55, 10.1186/gb-2005-6-6-r55.

    Google Scholar 

  38. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., Eisenhaber, F. (2003) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328, 581–592.

    Article  CAS  PubMed  Google Scholar 

  39. Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics 14, 755–763.

    Article  CAS  PubMed  Google Scholar 

  40. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B. A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P. S., Sigrist, C. J. A. (2008) The 20 years of PROSITE. Nucleic Acids Res 36, D245–D249, 10.1093/nar/gkm977.

    Article  CAS  PubMed  Google Scholar 

  41. Schäffer, A. A., Wolf, Y. I., Ponting, C. P., Koonin, E. V., Aravind, L., Altschul, S. F. (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15, 1000–1011.

    Article  PubMed  Google Scholar 

  42. Marchler-Bauer, A., Panchenko, A. R., Shoemaker, B. A., Thiessen, P. A., Geer, L. Y., Bryant, S. H. (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30, 281–283.

    Article  CAS  PubMed  Google Scholar 

  43. Letunic, I., Doerks, T., Bork, P. (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37, D229–D232, 10.1093/nar/gkn808.

    Article  CAS  PubMed  Google Scholar 

  44. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H., Ceric, G., Forslund, K., Eddy, S. R., Sonnhammer, E. L. L., et al. (2008) The Pfam protein families database. Nucleic Acids Res 36, D281–D288, 10.1093/nar/gkm960.

    Article  CAS  PubMed  Google Scholar 

  45. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990) Basic local alignment search tool. J Mol Biol 215, 403–410, 10.1006/jmbi.1990.9999.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schneider, G., Wildpaner, M., Sirota, F.L., Maurer-Stroh, S., Eisenhaber, B., Eisenhaber, F. (2010). Integrated Tools for Biomolecular Sequence-Based Function Prediction as Exemplified by the ANNOTATOR Software Environment. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics