Skip to main content

Adult Neural Stem Cells: Isolation and Propagation

  • Protocol
  • First Online:
Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 823))

  • 4602 Accesses

Abstract

Individualized therapy using adult stem cells constitutes a revolutionary vision for molecular medicine of the future. The field of stem cell biology has accelerated dramatically such that it now appears feasible to treat an individual patient’s disease with native or modified stem cells collected from the same patient. Neurodegenerative disease is a high-priority goal for stem cell therapy due to the tremendous clinical urgency to reduce the worldwide suffering associated with this class of diseases. This chapter focuses on adult neural stem cells as a prototype for the general field of adult stem cell therapy. Studies of the origin and function of neural stem cells reveals that the adult brain can generate new neurons. This finding provides the rationale for the therapeutic application of adult neural stem cells to treat neuronal damage or loss. Experimental progress in treating Parkinson’s disease is discussed in some detail as an example of one of the most promising areas for adult neural stem cell therapy. Methods for neural stem cell isolation and propagation are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds, B. A., Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175, 113.

    Article  PubMed  CAS  Google Scholar 

  2. Gage, F. H., Ray, J., Fisher, L. J. (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18, 15992.

    Article  PubMed  CAS  Google Scholar 

  3. Lindvall, O., Kokaia, Z. (2010) Stem cells in human neurodegenerative disorders – time for clinical translation? J Clin Invest 120, 2940.

    Article  PubMed  CAS  Google Scholar 

  4. Zeng, X., Rao, M. S. (2007) Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 145, 134858.

    Article  PubMed  CAS  Google Scholar 

  5. Carlson, M. E., Suetta, C., Conboy, M. J., Aagaard, P., Mackey, A., Kjaer, M. et al. (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1, 38191.

    Article  PubMed  CAS  Google Scholar 

  6. Hanson, S. E., Gutowski, K. A., Hematti, P. (2010) Clinical applications of mesenchymal stem cells in soft tissue augmentation. Aesthet Surg J 30, 83842.

    Article  PubMed  Google Scholar 

  7. Shin, D. M., Liu, R., Klich, I., Wu, W., Ratajczak, J., Kucia, M. et al. (2010) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24, 145061.

    Article  PubMed  CAS  Google Scholar 

  8. Emsley, J. G., Mitchell, B. D., Kempermann, G., Macklis, J. D. (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75, 32141.

    Article  PubMed  CAS  Google Scholar 

  9. Aguayo, A. J., David, S., Bray, G. M. (1981) Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J Exp Biol 95, 23140.

    PubMed  CAS  Google Scholar 

  10. David, S., Aguayo, A. J. (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 9313.

    Article  PubMed  CAS  Google Scholar 

  11. Sohur, U. S., Emsley, J. G., Mitchell, B. D., Macklis, J. D. (2006) Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 361, 147797.

    Article  PubMed  CAS  Google Scholar 

  12. Dirks, P. B. (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26, 291624.

    Article  PubMed  Google Scholar 

  13. Dirks, P. B. (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond B Biol Sci 363, 13952.

    Article  PubMed  CAS  Google Scholar 

  14. Vescovi, A. L., Galli, R., Reynolds, B. A. (2006) Brain tumour stem cells. Nat Rev Cancer 6, 42536.

    Article  PubMed  CAS  Google Scholar 

  15. Ricci-Vitiani, L., Pallini, R., Larocca, L. M., Lombardi, D. G., Signore, M., Pierconti, F. et al. (2008) Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ 15, 14918.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, R., Chadalavada, K., Wilshire, J., Kowalik, U., Hovinga, K. E., Geber, A. et al. (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 82933.

    Article  PubMed  CAS  Google Scholar 

  17. Ricci-Vitiani, L., Pallini, R., Biffoni, M., Todaro, M., Invernici, G., Cenci, T. et al. (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 8248.

    Article  PubMed  CAS  Google Scholar 

  18. Altman, J., Das, G. D. (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126, 33789.

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan, M. S., Hinds, J. W. (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 10924.

    Article  PubMed  CAS  Google Scholar 

  20. Gould, E. (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8, 4818.

    Article  PubMed  CAS  Google Scholar 

  21. Rakic, P. (1985) Limits of neurogenesis in primates. Science 227, 10546.

    Article  PubMed  CAS  Google Scholar 

  22. Gould, E., Tanapat, P., McEwen, B. S., Flugge, G., Fuchs, E. (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95, 316871.

    Article  PubMed  CAS  Google Scholar 

  23. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A. et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4, 13137.

    Article  PubMed  CAS  Google Scholar 

  24. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., Gage, F. H. (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130, 3919.

    Article  PubMed  CAS  Google Scholar 

  25. Lois, C., Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90, 20747.

    Article  PubMed  CAS  Google Scholar 

  26. Gritti, A., Bonfanti, L., Doetsch, F., Caille, I., Alvarez-Buylla, A., Lim, D. A. et al. (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22, 43745.

    PubMed  CAS  Google Scholar 

  27. Yang, D., Zhang, Z. J., Oldenburg, M., Ayala, M., Zhang, S. C. (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26, 5563.

    Article  PubMed  CAS  Google Scholar 

  28. Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F., Goldman, S. A. (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12, 125968.

    Article  PubMed  CAS  Google Scholar 

  29. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Wells, T. H., Barrett, J. N. et al. (1990) Transplantation of human fetal dopamine cells for Parkinson’s disease. Results at 1 year. Arch Neurol 47, 50512.

    Article  PubMed  CAS  Google Scholar 

  30. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A., Kriek, E., Qi, J. X. et al. (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327, 154955.

    Article  PubMed  CAS  Google Scholar 

  31. Freed, C. R., Breeze, R. E., Rosenberg, N. L., Schneck, S. A. (1993) Embryonic dopamine cell implants as a treatment for the second phase of Parkinson’s disease. Replacing failed nerve terminals. Adv Neurol 60, 7218.

    CAS  Google Scholar 

  32. Daadi, M. M., Maag, A. L., Steinberg, G. K. (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3, e1644.

    Article  PubMed  Google Scholar 

  33. Daadi, M. M., Davis, A. S., Arac, A., Li, Z., Maag, A. L., Bhatnagar, R. et al. (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41, 51623.

    Article  PubMed  Google Scholar 

  34. Benkler, C., Offen, D., Melamed, E., Kupershmidt, L., Amit, T., Mandel, S. et al. (2010) Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. 1, in The EPMA Journal. Springer Netherlands, 343–361.

    Google Scholar 

  35. Suzuki, M., McHugh, J., Tork, C., Shelley, B., Klein, S. M., Aebischer, P. et al. (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2, e689.

    Article  PubMed  Google Scholar 

  36. Sahni, V., Kessler, J. A. (2010) Stem cell therapies for spinal cord injury. Nat Rev Neurol 6, 36372.

    Article  PubMed  Google Scholar 

  37. Salazar, D. L., Uchida, N., Hamers, F. P., Cummings, B. J., Anderson, A. J. (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 5, e12272.

    Article  PubMed  Google Scholar 

  38. Perrin, F. E., Boniface, G., Serguera, C., Lonjon, N., Serre, A., Prieto, M. et al. (2010) Grafted human embryonic progenitors expressing neurogenin-2 stimulate axonal sprouting and improve motor recovery after severe spinal cord injury. PLoS One 5, e15914.

    Article  PubMed  CAS  Google Scholar 

  39. Barnabe-Heider, F., Frisen, J. (2008) Stem cells for spinal cord repair. Cell Stem Cell 3, 1624.

    Article  PubMed  CAS  Google Scholar 

  40. Abematsu, M., Tsujimura, K., Yamano, M., Saito, M., Kohno, K., Kohyama, J. et al. (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120, 325566.

    Article  PubMed  CAS  Google Scholar 

  41. Van Kampen, J. M., Eckman, C. B. (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 26, 727280.

    Article  PubMed  Google Scholar 

  42. Einstein, O., Ben-Hur, T. (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65, 4526.

    Article  PubMed  Google Scholar 

  43. Hess, D. C., Borlongan, C. V. (2008) Stem cells and neurological diseases. Cell Prolif 41 Suppl 1, 94114.

    PubMed  Google Scholar 

  44. Van Kampen, J. M., Hagg, T., Robertson, H. A. (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 19, 237787.

    Article  PubMed  Google Scholar 

  45. Reynolds, B. A., Tetzlaff, W., Weiss, S. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12, 456574.

    PubMed  CAS  Google Scholar 

  46. Reynolds, B. A., Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 170710.

    Article  PubMed  CAS  Google Scholar 

  47. Pacey, L. K. K., Stead, S., Gleave, J.A., Tomczyk, K., Doering, L. C. (2006) Neural stem cell culture: neurosphere generation, microscopical analysis and cyropreservation. Protocol Exchange: doi:10.1038/nprot.2006.215.

    Google Scholar 

  48. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T. et al. (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 3814.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Letcher, J.M., Cox, D.N. (2012). Adult Neural Stem Cells: Isolation and Propagation. In: Espina, V., Liotta, L. (eds) Molecular Profiling. Methods in Molecular Biology, vol 823. Humana Press. https://doi.org/10.1007/978-1-60327-216-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-216-2_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-215-5

  • Online ISBN: 978-1-60327-216-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics