Skip to main content

Reverse-Phase Protein Microarrays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 823))

Abstract

Cancer is the consequence of intra- and extracellular signaling network deregulation that derives from alteration of genetic and proteomic cellular homeostasis. Mapping the individual molecular circuitry of a patient’s tumor cells is the starting point for rational personalized therapy.

While genes and RNA encode information about cellular status, proteins are considered the engine of the cellular machine, as they are the effective elements that drive cellular functions, such as proliferation, migration, differentiation, and apoptosis. Consequently, investigations of the cellular protein network are considered a fundamental tool to understand cellular functions. In the last decades, increasing interest has been focused on the improvement of new technologies for proteomic analysis. In this context, reverse-phase protein microarrays (RPMAs) have been developed to study and analyze posttranslational modifications that are responsible for principal cell functions and activities. This innovative technology allows the investigation of protein activation as a consequence of protein–protein interaction or biochemical reactions, such as phosphorylation, glycosylation, ubiquitination, protein cleavage, and conformational alterations.

Intracellular balance is carefully conserved by constant rearrangements of proteins through the activity of a series of kinases and phosphatases. Therefore, knowledge of the key cellular signaling cascades reveal information regarding the cellular processes driving a tumor’s growth (such as cellular survival, proliferation, invasion, and cell death) and response to treatment.

Alteration to cellular homeostasis, driven by elaborate intra- and extracellular interactions, has become one of the most studied fields in the era of personalized medicine and targeted therapy. RPMA technology is a valid tool that can be applied to protein analysis of several diseases for the potential to generate protein interaction and activation maps that lead to the identification of critical nodes for individualized or combinatorial target therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liotta, L. A., Espina, V., Mehta, A. I., Calvert, V., Rosenblatt, K., Geho, D. et al. (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3, 317–25.

    Google Scholar 

  2. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W. et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–9.

    Google Scholar 

  3. Grote, T., Siwak, D. R., Fritsche, H. A., Joy, C., Mills, G. B., Simeone, D. et al. (2008) Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: accurate detection of CA19-9 levels in pancreatic cancer. Proteomics 8, 3051–60.

    Google Scholar 

  4. VanMeter, A. J., Rodriguez, A. S., Bowman, E. D., Jen, J., Harris, C. C., Deng, J. et al. (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7, 1902–24.

    Google Scholar 

  5. Wulfkuhle, J. D., Speer, R., Pierobon, M., Laird, J., Espina, V., Deng, J. et al. (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7, 1508–17.

    Google Scholar 

  6. Rapkiewicz, A., Espina, V., Zujewski, J. A., Lebowitz, P. F., Filie, A., Wulfkuhle, J. et al. (2007) The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer 111, 173–84.

    Google Scholar 

  7. Espina, V., Mehta, A. I., Winters, M. E., Calvert, V., Wulfkuhle, J., Petricoin, E. F., 3rd et al. (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3, 2091–100.

    Google Scholar 

  8. Davuluri, G., Espina, V., Petricoin, E. F., 3rd, Ross, M., Deng, J., Liotta, L. A. et al. (2009) Activated VEGF receptor shed into the vitreous in eyes with wet AMD: a new class of biomarkers in the vitreous with potential for predicting the treatment timing and monitoring response. Arch Ophthalmol 127, 613–21.

    Google Scholar 

  9. Longo, C., Patanarut, A., George, T., Bishop, B., Zhou, W., Fredolini, C. et al. (2009) Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One 4, e4763.

    Google Scholar 

  10. Mueller, C., Zhou, W., Vanmeter, A., Heiby, M., Magaki, S., Ross, M. M. et al. (2009) The Heme Degradation Pathway is a Promising Serum Biomarker Source for the Early Detection of Alzheimer’s Disease. J Alzheimers Dis

    Google Scholar 

  11. Becker, K. F., Schott, C., Hipp, S., Metzger, V., Porschewski, P., Beck, R. et al. (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211, 370–8.

    Google Scholar 

  12. Bobrow, M. N., Harris, T. D., Shaughnessy, K. J., Litt, G. J. (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125, 279–85.

    Google Scholar 

  13. Kornblau, S. M., Tibes, R., Qiu, Y., Chen, W., Kantarjian, H. M., Andreeff, M. et al. (2008) Functional proteomic profiling of AML predicts response and survival. Blood

    Google Scholar 

  14. Hennessy, B. T., Lu, Y., Poradosu, E., Yu, Q., Yu, S., Hall, H. et al. (2007) Pharmacodynamic markers of perifosine efficacy. Clin Cancer Res 13, 7421–31.

    Google Scholar 

  15. Belluco, C., Mammano, E., Petricoin, E., Prevedello, L., Calvert, V., Liotta, L. et al. (2005) Kinase substrate protein microarray analysis of human colon cancer and hepatic metastasis. Clin Chim Acta 357, 180–3.

    Google Scholar 

  16. Silvestri, A., Colombatti, A., Calvert, V. S., Deng, J., Mammano, E., Belluco, C. et al. (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 90, 787–96.

    Google Scholar 

  17. Petricoin, E. F., 3rd, Espina, V., Araujo, R. P., Midura, B., Yeung, C., Wan, X. et al. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67, 3431–40.

    Google Scholar 

  18. Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., Coukos, G. et al. (2006) Laser-capture microdissection. Nat Protoc 1, 586–603.

    Google Scholar 

  19. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R. et al. (1996) Laser capture microdissection. Science 274, 998–1001.

    Google Scholar 

  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.

    Google Scholar 

  21. Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S. et al. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278, 1481,1483.

    Google Scholar 

  22. Popova, T. G., Turell, M. J., Espina, V., Kehn-Hall, K., Kidd, J., Narayanan, A. et al. (2010) Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells. PLoS One 5, e13805.

    Google Scholar 

  23. Popova, T., Espina, V., Bailey, C., Liotta, L., Petricoin, E., Popov, S. (2009) Anthrax infection inhibits the AKT signaling involved in the E-cadherin-mediated adhesion of lung epithelial cells. FEMS Immunol Med Microbiol 56, 129–42.

    Google Scholar 

  24. Agarwal, R., Gonzalez-Angulo, A. M., Myhre, S., Carey, M., Lee, J. S., Overgaard, J. et al. (2009) Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res 15, 3654–62.

    Google Scholar 

  25. Nishizuka, S., Charboneau, L., Young, L., Major, S., Reinhold, W. C., Waltham, M. et al. (2003) Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 100, 14229–34.

    Google Scholar 

  26. Accordi, B., Espina, V., Giordan, M., VanMeter, A., Milani, G., Galla, L. et al. (2010) Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One 5, e13552.

    Google Scholar 

  27. Mueller, C., Liotta, L. A., Espina, V. (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4, 461–81.

    Google Scholar 

  28. Bobrow, M. N., Shaughnessy, K. J., Litt, G. J. (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137, 103–12.

    Google Scholar 

  29. Bobrow, M. N., Litt, G. J., Shaughnessy, K. J., Mayer, P. C., Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150, 145–9.

    Google Scholar 

  30. Hunyady, B., Krempels, K., Harta, G., Mezey, E. (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44, 1353–62.

    Google Scholar 

  31. King, G., Payne, S., Walker, F., Murray, G. I. (1997) A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J Pathol 183, 237–41.

    Google Scholar 

  32. Berggren, K., Steinberg, T. H., Lauber, W. M., Carroll, J. A., Lopez, M. F., Chernokalskaya, E. et al. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 276, 129–43.

    Google Scholar 

  33. Berggren, K. N., Schulenberg, B., Lopez, M. F., Steinberg, T. H., Bogdanova, A., Smejkal, G. et al. (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2, 486–98.

    Google Scholar 

  34. Miller, W. G., Gibbs, E. L., Jay, D. W., Pratt, K. W., Rossi, B., Vojt, C. M. et al. (2006) Preparation and testing of reagent water in the clinical laboratory; Approved Guideline-Fourth Edition. 26. Clinical Laboratory Standards Institute: Wayne, PA

    Google Scholar 

  35. Stillman, B. A., Tonkinson, J. L. (2000) FAST slides: a novel surface for microarrays. Biotechniques 29, 630–5.

    Google Scholar 

  36. Tonkinson, J. L., Stillman, B. A. (2002) Nitrocellulose: a tried and true polymer finds utility as a post-genomic substrate. Front Biosci 7, c1-12.

    Google Scholar 

  37. Rossner, M., Yamada, K. M. (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166, 11–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaelena Pierobon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pierobon, M., VanMeter, A.J., Moroni, N., Galdi, F., Petricoin, E.F. (2012). Reverse-Phase Protein Microarrays. In: Espina, V., Liotta, L. (eds) Molecular Profiling. Methods in Molecular Biology, vol 823. Humana Press. https://doi.org/10.1007/978-1-60327-216-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-216-2_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-215-5

  • Online ISBN: 978-1-60327-216-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics