Skip to main content

Immunohistological Techniques for Studying the Drosophila Male Germline Stem Cell

  • Protocol
Germline Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 450))

Summary

Stem cells are undifferentiated cells that have a remarkable ability to self-renew and produce differentiated cells that support normal development and tissue homeostasis. This unique capacity makes stem cells a powerful tool for future regenerative medicine and gene therapy. Accumulative evidence suggests that stem cell self-renewal or differentiation is controlled by both intrinsic and extrinsic factors, and that deregulation of stem cell behavior results in cancer formation, tissue degeneration, and premature aging. The Drosophila testis provides an excellent in vivo model for studying and understanding the fundamental cellular and molecular mechanisms controlling stem cell behavior and the relationship between niches and stem cells. At the tip of the Drosophila testes, germline stem cells (GSCs) and somatic stem cells (SSCs) contact each other and share common niches (known as a hub) to maintain spermatogenesis. Signaling pathways, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), bone morphogenetic protein (BMP), ras-associated protein—guanine nucleotide exchange factor for small GTPase (Rap-GEF), and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK), are known to regulate self-renewal or differentiation of Drosophila male germline stem cells. We describe the detailed in vivo immunohistological protocols that mark GSCs, SSCs, and their progeny in Drosophila testes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature. 414, 105–111.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001) Stem cells find their niche. Nature. 414, 98–104.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Fuchs, E., Tumbar, T., and Guasch, G. (2004) Socializing with the neighbors: stem cells and their niche. Cell. 116, 769–778.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Ohlstein, B., Kai, T., Decotto, E., and Spradling, A. (2004) The stem cell niche: theme and variations. Curr. Opin. Cell Biol. 16, 693–699.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Li, L., and Xie, T. (2005) Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Xi, R., and Xie, T. (2005) Stem cell self-renewal controlled by chromatin remodeling factors. Science. 310, 1487–1489.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Scadden, D. T. (2006) The stem-cell niche as an entity of action. Nature. 441, 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Li, L., and Neaves, W. B. (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66, 4553–4557.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Le Bras, S., and Van Doren, M. (2006) Development of the male germline stem cell niche in Drosophila. Dev. Biol. 294, 92–103.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Lin, H. (1997) The tao of stem cells in the germline. Annu. Rev. Genet. 31, 455–491.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Fuller, M. T. (1998) Genetic control of cell proliferation and differentiation in Drosophila spermatogenesis. Semin. Cell Dev. Biol. 9, 433–444.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Wong, M. D., Jin, Z., and Xie T. (2005) Molecular mechanisms of germline stem cell regulation. Annu. Rev. Genet. 39, 173–195.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Xie, T., Kawase, E., Kirilly, D., and Wong M. D. (2005) Intimate relationships with their neighbors: tales of stem cells in Drosophila reproductive systems. Dev. Dyn. 232, 775–790.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Terry, N.A, Tulina, N., Matunis, E., and DiNardo S. (2006) Novel regulators revealed by profiling Drosophila testis stem cells within their niche. Dev. Biol. 294, 246–257.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Lin, H. (2002) The stem-cell niche theory: lessons from flies. Nat. Rev. Genet. 3, 931–940.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Gilboa, L., and Lehmann, R. (2004) How different is Venus from Mars? The genetics of germline stem cells in Drosophila females and males. Development. 131, 4895–4905.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Yamashita, Y. M., Fuller, M. T., and Jones, D. L. (2005) Signaling in stem cell niches: lessons from the Drosophila germline. J. Cell Sci. 118, 665–672.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Wang, H., Singh, S. R., Zheng, Z., et al. (2006) Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-cadherin-mediated cell adhesion in the Drosophila testis. Dev. Cell.. 10, 117–126.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Singh, S. R., Zhen, W., Zheng, Z., et al. (2006) The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene. 25, 5933–5941.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Bunt, S. M., and Hime, G. R. (2004) Ectopic activation of Dpp signalling in the male Drosophila germline inhibits germ cell differentiation. Genesis. 39, 84–93.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L., and Garavito, M. (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J. Ultrastruct. Res. 69, 180–190.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Gonczy, P., and DiNardo, S. (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development. 122, 2437–2447.

    CAS  PubMed  Google Scholar 

  23. 23. Yamashita, Y. M., Jones, D. L., and Fuller, M. T. (2003) Orientation of asymmetric stem cell division by APC tumor suppressor and centrosome. Science. 301, 1547–1550.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Yamashita, Y. M., Mahowald, A. P., Perlin, J. R., and Fuller, M. T. (2007) Asymmetric inheritance of mother vs daughter centosome in stem cell division. Science. 315, 518–521.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Hou, S.X., Melnick, M. B., and Perrimon, N. (1996) marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell. 84, 411–419.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Hou, X. S., and Perrimon, N. (1997) The JAK-STAT pathway in Drosophila. Trend. Genet. 13, 105–110.

    Article  CAS  Google Scholar 

  27. 27. Hou, S. X., Zheng, Z., Chen, X., and Perrimon, N. (2002) The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell. 3, 765–778.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B., and Fuller, M. T. (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science. 294, 2542–2545.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Tulina, N., and Matunis, E. (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science. 294, 2546–2549.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Brawley, C., and Matunis, E. (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 304, 1331–1334.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Schulz, C., Kiger, A. A., Tazuke, S. I., et al. (2004) A mis-expression screen reveals effects of bag-of-marbles and TGF-β class signaling on the Drosophila male germ-line stem cell lineage. Genetics. 167, 707–723.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Matunis, E., Tran, J., Gonczy, P., Caldwell, K., and DiNardo, S. (1997) punt and schnurri regulate a somatically derived signal that restricts proliferation of committed progenitors in the germline. Development. 124, 4383–4391.

    CAS  PubMed  Google Scholar 

  33. 33. Shivdasani, A. A., and Ingham, P. W. (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by TGF-β signaling in Drosophila spermatogenesis. Curr. Biol. 13, 2065–2072.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Kawase, E., Wong, M. D., Ding, B. C., and Xie, T. (2003) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development. 131, 1365–1375.

    Article  Google Scholar 

  35. 35. Gonczy, P., Matunis, E., and DiNardo, S. (1997) Bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis. Development. 124, 4361–4371.

    CAS  PubMed  Google Scholar 

  36. 36. Kiger, A. A., White-Cooper, H., and Fuller, M.T. (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature. 407, 750–754.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Tran, J., Brenner, T. J., and DiNardo, S. (2000) Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature. 407, 754–757.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Golic K. G., and Lindquist S. (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 59, 499–509.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Lee T., and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 22, 451–461.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Harrison, D., and Perrimon, N. (1993) Simple and efficient generation of marked clones in Drosophila. Curr. Biol. 3, 424–433.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Millar, A. (1941). Position of adult testes in Drosophila melanogaster Meigen. Proc. Natl. Acad. Sci. U. S. A. 27, 35–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Singh, S.R., Hou, S.X. (2008). Immunohistological Techniques for Studying the Drosophila Male Germline Stem Cell. In: Hou, S.X., Singh, S.R. (eds) Germline Stem Cells. Methods in Molecular Biology™, vol 450. Humana Press. https://doi.org/10.1007/978-1-60327-214-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-214-8_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-213-1

  • Online ISBN: 978-1-60327-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics