Skip to main content

Mass Spectrometry in Epigenetic Research

  • Protocol
  • First Online:
Bioinformatics Methods in Clinical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 593))

Abstract

The inhibition of the histone deacetylase enzymes induces hyperacetylation of the histone proteins. This hyperacetylation causes cell cycle arrest and cell death in cancer cells but not in normal cells. Therefore, the development of histone deacetylase inhibitors for the treatment of various cancers has gained tremendous interest in recent years, and many of these inhibitors are currently undergoing clinical trials. Despite intense research, however, the exact molecular mechanisms of action of these molecules remain, to a wide extent, unclear. The recent application of mass spectrometry-based proteomics techniques to histone biology has gained new insight into the function of the nucleosome: Novel posttranslational modifications have been discovered at the lateral surface of the nucleosome. These modifications regulate histone–DNA interactions, adding a new dimension to the epigenetic regulation of nucleosome mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strahl BD, Allis CD. (2000) The language of covalent histone modifications. Nature 403(6765):41–45.

    Article  PubMed  CAS  Google Scholar 

  2. Berger SL. (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12(2):142–148.

    Article  PubMed  CAS  Google Scholar 

  3. Wisniewski JR, Zougman A, Mann M. (2008) Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 36(2):570–577.

    Article  PubMed  CAS  Google Scholar 

  4. Shiio Y, Eisenman RN. (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100(23):13225–13230.

    Article  PubMed  CAS  Google Scholar 

  5. Fischle W, Wang Y, Allis CD. (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425(6957):475–479.

    Article  PubMed  CAS  Google Scholar 

  6. Turner BM. (2000) Histone acetylation and an epigenetic code. Bioessays 22(9):836–845.

    Article  PubMed  CAS  Google Scholar 

  7. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD. (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438(7071):1116–1122.

    Article  PubMed  CAS  Google Scholar 

  8. Agalioti T, Chen G, Thanos D. (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111(3): 381–392.

    Article  PubMed  CAS  Google Scholar 

  9. Turner BM. (2002) Cellular memory and the histone code. Cell 111(3):285–291.

    Article  PubMed  CAS  Google Scholar 

  10. Johnstone RW. (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4):287–299.

    Article  PubMed  CAS  Google Scholar 

  11. Marks PA, Richon VM, Rifkind RA. (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92(15):1210–1216.

    Article  PubMed  CAS  Google Scholar 

  12. Bolden JE, Peart MJ, Johnstone RW. (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784.

    Article  PubMed  CAS  Google Scholar 

  13. Gu W, Roeder RG. (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90(4):595–606.

    Article  PubMed  CAS  Google Scholar 

  14. Glozak MA, Seto E. (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432.

    Article  PubMed  CAS  Google Scholar 

  15. Murray K. (1964) The occurrence of epsilon-n-methyl lysine in histones. Biochemistry 3:10–15.

    Article  PubMed  CAS  Google Scholar 

  16. Allfrey VG, Faulkner R, Mirsky AE. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786–794.

    Article  PubMed  CAS  Google Scholar 

  17. Ord MG, Stocken LA. (1966) Metabolic properties of histones from rat liver and thymus gland. Biochem J 98(3):888–897.

    PubMed  CAS  Google Scholar 

  18. Stevely WS, Stocken LA. (1966) Phosphorylation of rat-thymus histone. Biochem J 100(2):20C–21C.

    PubMed  CAS  Google Scholar 

  19. Ueda K, Omachi A, Kawaichi M, Hayaishi O. (1975) Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci USA 72(1):205–209.

    Article  PubMed  CAS  Google Scholar 

  20. Cheung P. (2004) Generation and characterization of antibodies directed against di-modified histones, and comments on antibody and epitope recognition. Methods Enzymol 376:221–234.

    Article  PubMed  CAS  Google Scholar 

  21. Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON. (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5(7):1314–1325.

    Article  PubMed  CAS  Google Scholar 

  22. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF. (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822.

    PubMed  CAS  Google Scholar 

  23. Zhang K, Yau PM, Chandrasekhar B, New R, Kondrat R, Imai BS, Bradbury ME. (2004) Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: an application for determining lysine 9 acetylation and methylation of histone H3. Proteomics 4(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  24. Trelle MB, Jensen ON. (2008) Utility of immonium ions for assignment of epsilon-N-acetyllysine-containing peptides by tandem mass spectrometry. Anal Chem 80(9):3422–3430.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang K, Williams KE, Huang L, Yau P, Siino JS, Bradbury EM, Jones PR, Minch MJ, Burlingame AL. (2002) Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol Cell Proteomics 1(7):500–508.

    Article  PubMed  CAS  Google Scholar 

  26. Ren C, Zhang L, Freitas MA, Ghoshal K, Parthun MR, Jacob ST. (2005) Peptide mass mapping of acetylated isoforms of histone H4 from mouse lymphosarcoma cells treated with histone deacetylase (HDACs) inhibitors. J Am Soc Mass Spectrom 16(10):1641–1653.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Eugeni EE, Parthun MR, Freitas MA. (2003) Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112(2):77–86.

    Article  PubMed  CAS  Google Scholar 

  28. Bonenfant D, Coulot M, Towbin H, Schindler P, van Oostrum J. (2006) Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics 5(3):541–552.

    PubMed  CAS  Google Scholar 

  29. Garcia BA, Hake SB, Diaz RL, Kauer M, Morris SA, Recht J, Shabanowitz J, Mishra N, Strahl BD, Allis CD, Hunt DF. (2007) Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem 282(10):7641–7655.

    Article  PubMed  CAS  Google Scholar 

  30. Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF. (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281(1):559–568.

    Article  PubMed  CAS  Google Scholar 

  31. Garcia BA, Barber CM, Hake SB, Ptak C, Turner FB, Busby SA, Shabanowitz J, Moran RG, Allis CD, Hunt DF. (2005) Modifications of human histone H3 variants during mitosis. Biochemistry 44(39):13202–13213.

    Article  PubMed  CAS  Google Scholar 

  32. Morris SA, Rao B, Garcia BA, Hake SB, Diaz RL, Shabanowitz J, Hunt DF, Allis CD, Lieb JD, Strahl BD. (2007) Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem 282(10):7632–7640.

    Article  PubMed  CAS  Google Scholar 

  33. Medzihradszky KF, Zhang X, Chalkley RJ, Guan S, McFarland MA, Chalmers MJ, Marshall AG, Diaz RL, Allis CD, Burlingame AL. (2004) Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol Cell Proteomics 3(9):872–886.

    Article  PubMed  CAS  Google Scholar 

  34. Xu F, Zhang K, Grunstein M. (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121(3):375–385.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang K, Tang H. (2003) Analysis of core histones by liquid chromatography-mass spectrometry and peptide mapping. J Chromatogr B Anal Technol Biomed Life Sci 783(1):173–179.

    Article  CAS  Google Scholar 

  36. Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL. (2002) Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 306(2): 259–269.

    Article  PubMed  CAS  Google Scholar 

  37. Cocklin RR, Wang M. (2003) Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry. J Protein Chem 22(4): 327–334.

    Article  PubMed  CAS  Google Scholar 

  38. Maile T, Kwoczynski S, Katzenberger RJ, Wassarman DA, Sauer F. (2004) TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304(5673):1010–1014.

    Article  PubMed  CAS  Google Scholar 

  39. Smith CM, Gafken PR, Zhang Z, Gottschling DE, Smith JB, Smith DL. (2003) Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4. Anal Biochem 316(1):23–33.

    Article  PubMed  CAS  Google Scholar 

  40. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386.

    Article  PubMed  CAS  Google Scholar 

  41. Bantscheff M, Dumpelfeld B, Kuster B. (2004) Femtomol sensitivity post-digest 18O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom 18(8): 869–876.

    Article  PubMed  CAS  Google Scholar 

  42. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169.

    Article  PubMed  CAS  Google Scholar 

  43. Boyne MT, 2nd, Pesavento JJ, Mizzen CA, Kelleher NL. (2006) Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res 5(2):248–253.

    Article  PubMed  CAS  Google Scholar 

  44. Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ, La Thangue NB, Brown R. (2003) Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 2(8):721–728.

    PubMed  CAS  Google Scholar 

  45. Ginsburg E, Salomon D, Sreevalsan T, Freese E. (1973) Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells. Proc Natl Acad Sci USA 70(8):2457–2461.

    Article  PubMed  CAS  Google Scholar 

  46. Altenburg BC, Via DP, Steiner SH. (1976) Modification of the phenotype of murine sarcoma virus-transformed cells by sodium butyrate. Effects on morphology and cytoskeletal elements. Exp Cell Res 102(2):223–231.

    CAS  Google Scholar 

  47. Boffa LC, Vidali G, Mann RS, Allfrey VG. (1978) Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 253(10):3364–3366.

    PubMed  CAS  Google Scholar 

  48. Gregoretti IV, Lee YM, Goodson HV. (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1): 17–31.

    Article  PubMed  CAS  Google Scholar 

  49. Jenuwein T, Allis CD. (2001) Translating the histone code. Science 293(5532):1074–1080.

    Article  PubMed  CAS  Google Scholar 

  50. Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, LachnerM, Jenuwein T, Almouzni G. (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30(3):329–334.

    Article  PubMed  Google Scholar 

  51. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400.

    Article  PubMed  CAS  Google Scholar 

  52. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK. (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266.

    Article  PubMed  CAS  Google Scholar 

  53. Leder A, Orkin S, Leder P. (1975) Differentiation of erythroleukemic cells in the presence of inhibitors of DNA synthesis. Science 190(4217):893–894.

    Article  PubMed  CAS  Google Scholar 

  54. Riggs MG, Whittaker RG, Neumann JR, Ingram VM. (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268(5619):462–464.

    Article  PubMed  CAS  Google Scholar 

  55. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89(3):341–347.

    Article  PubMed  CAS  Google Scholar 

  56. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601.

    Article  PubMed  CAS  Google Scholar 

  57. Boulaire J, Fotedar A, Fotedar R. (2000) The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris) 48(3):190–202.

    CAS  Google Scholar 

  58. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019.

    Article  PubMed  CAS  Google Scholar 

  59. Glozak MA, Sengupta N, Zhang X, Seto E. (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23.

    Article  PubMed  CAS  Google Scholar 

  60. Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y, Sun J, Yu Y, Zhou W, Zheng Q, Wu M, Otterson GA, Zhu WG. (2006) Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol 26(7):2782–2790.

    Article  PubMed  CAS  Google Scholar 

  61. Roy S, Tenniswood M. (2007) Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem 282(7):4765–4771.

    Article  PubMed  CAS  Google Scholar 

  62. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA. (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13(5):627–638.

    Article  PubMed  CAS  Google Scholar 

  63. Glaser KB. (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671.

    Article  PubMed  CAS  Google Scholar 

  64. Longley DB, Harkin DP, Johnston PG. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338.

    Article  PubMed  CAS  Google Scholar 

  65. Tumber A, Collins LS, Petersen KD, Thougaard A, Christiansen SJ, Dejligbjerg M, Jensen PB, Sehested M, Ritchie JW. (2007) The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Cancer Chemother Pharmacol 60(2):275–283.

    Article  PubMed  CAS  Google Scholar 

  66. Ocker M, Alajati A, Ganslmayer M, Zopf S, Luders M, Neureiter D, Hahn EG, Schuppan D, Herold C. (2005) The histone-deacetylase inhibitor SAHA potentiates proapoptotic effects of 5-fluorouracil and irinotecan in hepatoma cells. J Cancer Res Clin Oncol 131(6): 385–394.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang X, Yashiro M, Ren J, Hirakawa K. (2006) Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep 16(3):563–568.

    PubMed  CAS  Google Scholar 

  68. Byrd JC, Marcucci G, Parthun MR, Xiao JJ, Klisovic RB, Moran M, Lin TS, Liu S, Sklenar AR, Davis ME, Lucas DM, Fischer B, Shank R, Tejaswi SL, Binkley P, Wright J, Chan KK, Grever MR. (2005) A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105(3)959–967.

    Article  PubMed  CAS  Google Scholar 

  69. Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, Figg WD, Hwang K, Chung EJ, Murgo A, Melillo G, Elsayed Y, Monga M, Kalnitskiy M, Zwiebel J, Sausville EA. (2005) Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 23(17):3912–3922.

    Article  PubMed  CAS  Google Scholar 

  70. Munster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R, Simon G, Fishman M, Minton S, Garrett C, Chiappori A, Lush R, Sullivan D, Daud A. (2007) Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 25(15):1979–1985.

    Article  PubMed  CAS  Google Scholar 

  71. Marquard L, Petersen KD, Persson M, Hoff KD, Jensen PB, Sehested M. (2008) Monitoring the effect of Belinostat in solid tumors by H4 acetylation. APMIS 116(5):382–392.

    Article  PubMed  CAS  Google Scholar 

  72. Dejligbjerg M, Grauslund M, Christensen IJ, Tjornelund J, Buhl Jensen P, Sehested M. (2008) Identification of predictive biomarkers for the histone deacetylase inhibitor Belinostat in a panel of human cancer cell lines. Cancer Biomark 4(2):101–109.

    PubMed  CAS  Google Scholar 

  73. Solomon MJ, Larsen PL, Varshavsky A. (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947.

    Article  PubMed  CAS  Google Scholar 

  74. Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7(4):592–604.

    Article  PubMed  CAS  Google Scholar 

  75. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4):517–527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Beck, H.C. (2010). Mass Spectrometry in Epigenetic Research. In: Matthiesen, R. (eds) Bioinformatics Methods in Clinical Research. Methods in Molecular Biology, vol 593. Humana Press. https://doi.org/10.1007/978-1-60327-194-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-194-3_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-193-6

  • Online ISBN: 978-1-60327-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics