Skip to main content

Isolation of Viruses from High Temperature Environments

  • Protocol
Book cover Bacteriophages

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 501))

Abstract

The detection and isolation of viruses directly from high temperature (>80\(^\circ\)C) acidic (pH<4) hot springs, fumaroles, and soils has long been challenging. These extreme environments tend to have a low biomass (typically <106 cells/ml) and low free viral abundance (103-106particles/ml) compared to eutrophic freshwater lakes (1) or near- shore marine environments (2). Establishing laboratory cultures from these environments pose challenges due to the extreme and poorly defined growth conditions that must be mimicked in the laboratory. Likewise, culture-independent approaches for isolation of viruses are problematic because of our rudimentary knowledge of viral diversity in these environments and the lack of universally conserved signatures that can be used for virus detection and isolation. Here we discuss both culture-based and culture-independent techniques for detection and isolation of viruses from acidic thermal features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bettarel, Y., Sime-Ngando, T., Amblard, C., Dolan, J. (2004) Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology, 70, 2941–2951.

    Article  CAS  PubMed  Google Scholar 

  2. Snyder, J.C., Spuhler, J., Wiedenheft, B., Roberto, F.F., Douglas, T., Young, M.J. (2004) Effects of culturing on the population structure of a hyperthermophilic virus. Microbial Ecology, 48, 561–566.

    Article  CAS  PubMed  Google Scholar 

  3. Zillig, W., Kletzin, A., Schleper, C., Holz, I., Janekovic, D., Hain, J., Lanzendörfer, Kristjansson, J.K. (1994) Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Systematic Applied Microbiology. 16, 609–628.

    Google Scholar 

  4. Prangishvili, D., Garrett, R. (2005) Viruses of hyperthermophilic Crenarchaea. Trends in Microbiology, 13, 535–542.

    Article  CAS  PubMed  Google Scholar 

  5. Suttle, C.A. (2005) Viruses in the sea. Nature, 437, 356–361.

    Article  CAS  PubMed  Google Scholar 

  6. Wommack, K.E., Colwell, R.R. (2000) Virioplankton: Viruses in aquatic ecosystems, Microbiology and Molecular Biology Reviews, 64, 69–114.

    Article  CAS  PubMed  Google Scholar 

  7. Borsheim, H.Y., Bratbak, G., Heldal, M. (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Applied Environmental Microbiology, 56, 352–356.

    CAS  Google Scholar 

  8. Wen, K., Ortmann, A., Suttle. C.A. (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Applied and Environmental Microbiology, 70, 3862–3867.

    Article  CAS  PubMed  Google Scholar 

  9. Vaidya, S.R., Kharul, H.K., Chitambar, S.D., Wanjale, S.D., Bhole, Y.S. (2004) Removal of hepatitis A virus from water by polyacrylonitrile-based ultrafiltration membranes. Journal of Virological Methods, 119, 7–9.

    Article  CAS  PubMed  Google Scholar 

  10. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfanndock, C., Rogers, Y-H., Smith, H.O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, K., Martiny, A.C., Reppas, N.B., Barry, K.W. Malek, J., Chisholm, S.W., Church, G. (2006) Sequencing genomes from single cells by polymerase cloning. Nature Biotechnology, 24, 680–686.

    Article  CAS  PubMed  Google Scholar 

  12. Snyder, J.C., Stedman, K., Rice, G., Wiedenheft, B., Spuhler, J., Young, M. (2003) Viruses of hyperthermophilic Archaea. Research in Microbiology, 154, 474–482.

    Article  CAS  PubMed  Google Scholar 

  13. Bettarel, Y., Sime-Ngando, T., Amblard, C., Dolan, J. (2004) Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology, 70, 2941–2951.

    Article  CAS  PubMed  Google Scholar 

  14. German National Resource Centre for Biological Material (DSMZ) website: www.dsmz.de.

  15. Itoh, T., Suzuki, K., Nakase, T. (1998) Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote, International Journal of Systematic Bacteriology, 48, 879–88.

    Article  PubMed  Google Scholar 

  16. Segerer, A.H., Trincone, A., Gahrz, M., Stetter, K. (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidiophilic Archaebacteria of the order Sulfolobales. International Journal of Systematic Bacteriology, 41, 495–501.

    Article  Google Scholar 

  17. Huber, G., Spinnler, C., Gambacorta, A., Stetter, K.O. (1989) Metallosphaera sedula gen. and sp. nov. Represents a new genus of aerobic, metal-mobilizing, thermoacidophilic Archaebacteria. Systematic Applied Microbiology, 12, 38–47.

    Google Scholar 

  18. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., Wolfe, R.S. (1979) Methanogens: Reevaluation of a unique biological group. Microbiological Reviews, 43, 260–296.

    CAS  PubMed  Google Scholar 

  19. Itoh, T., Suzuki, K., Takashi, N., (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from ot springs in Japan. International Journal of Systematic and Evolutionary Microbiology. 52, 1097–1104.

    Article  CAS  PubMed  Google Scholar 

  20. Segerer, A., Neuner, A., Kristjansson, J.K., Stetter, K.O.(1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing Archaebacteria. International Journal of Systematic Bacteriology, 36, 559–564.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fulton, J., Douglas, T., Young, a.M. (2009). Isolation of Viruses from High Temperature Environments. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 501. Humana Press. https://doi.org/10.1007/978-1-60327-164-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-164-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-682-5

  • Online ISBN: 978-1-60327-164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics