Skip to main content

The Electroosmotic Flow (EOF)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 583))

Abstract

Controlling and manipulating liquids and analytes at the sub-millimeter scale is a challenge that frequently requires new methods to be developed. Indeed, scaling-down of traditional macroscopic ideas often fails. For instance, pumping liquids using pressure differences is often impractical and counterproductive because the resulting parabolic flow profile deforms sample zones. As the size of the system shrinks, the surface-to-volume ratio increases and interfacial effects become dominant. This actually opens new possibilities since the phenomenon of electroosmotic flow (EOF), wherein a fluid is made to move relative to a stationary charged boundary, can then be exploited to design efficient microfluidic devices. In this chapter, we review the fundamental principles of EOF as well as some of the methods used to coat channel walls and reduce the impact of EOF in situations where it would be unfavorable for the device performance.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Russel, W. B., Saville, D. A. and Schowalter, W. R. (1989) Colloidal Dispersions. Cambridge University Press, New York.

    Book  Google Scholar 

  2. Israelachvili, J. N. (1992) Intermolecular and Surface Forces. Academic Press, New York.

    Google Scholar 

  3. Behrens, S. H. and Grier, D. G. (2001) The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716–6721.

    Article  CAS  Google Scholar 

  4. Viovy, J.-L. (2000) Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev. Mod. Phys. 72, 813–872.

    Article  CAS  Google Scholar 

  5. Rice, C. L. and Whitehead, R. (1965) Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4023.

    Article  CAS  Google Scholar 

  6. Datta, R. and Kotamarthi, V. R. (1990) Electrokinetic dispersion in capillary electrophoresis. AICHE J. 36, 916–926.

    Article  CAS  Google Scholar 

  7. Patankar, N. P. and Hu, H. H. (1998) Numerical Simulation of electroosmotic flow. Anal. Chem. 70, 1870–1881.

    Article  CAS  Google Scholar 

  8. Berhens, S. H. and Borkovec, M. (1999) Electrostatic interaction of colloidal surfaces with variable charge. J. Phys. Chem. B 103, 2918–2928.

    Article  Google Scholar 

  9. Burns, N. L., Emoto, K., Holmberg, K., Van Alstine, J. M., and Morris, J. M. (1998) Surface characterization of biomedical materials by measurement of electroosmosis. Biomaterials 19, 423–440.

    Article  CAS  Google Scholar 

  10. Stone, H. A., Stroock, A. D., and Ajdari, A. (2004) Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411.

    Article  Google Scholar 

  11. Hjertén, S. (1985) High-performance electrophoresis – elimination of electroendoosmosis and solute adsorption. J. Chromatogr. 347, 191–198.

    Article  Google Scholar 

  12. Albarghouthi, M. N., Stein, T. M., and Barron, A. E. (2003) Poly-N-hydroxyethylacrylamide as a novel, adsorbed coating for protein separation by capillary electrophoresis. Electrophoresis 24, 1166–1175.

    Article  CAS  Google Scholar 

  13. Doherty, E. A. S., Meagher, R. J., Albarghouthi, M. N., and Barron, A. E. (2003) Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24, 34–54.

    Article  Google Scholar 

  14. Birdi, K. S. (1997) Handbook of Surface and Colloid Chemistry. CRC Press LLC, New York, pp. 559–600.

    Google Scholar 

  15. Doherty, E. A. S., Berglund, K. D., Buchholz, B. A., Kourkine, I. V., Przybycien, T. M., Tilton, R. D., and Barron, A. E. (2002) Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA. Electrophoresis 23, 2766–2776.

    Article  CAS  Google Scholar 

  16. Williams, B. A. and Vigh, G. (1996) Fast, accurate mobility determination method for capillary electrophoresis. Anal. Chem. 68, 1174–1180.

    Article  CAS  Google Scholar 

  17. Huang, X. Gordon, M. J., and Zare, R. N. (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal. Chem. 60, 1837–1838.

    Article  CAS  Google Scholar 

  18. Chiari, M., Cretich, M., Damin, F., Ceriotti, L., and Consonni, R. (2000) New adsorbed coatings for capillary electrophoresis. Electrophoresis 20, 909–916.

    Article  Google Scholar 

  19. Sassi, A., Barron, A. E., Alonso-Amigo, M. G., Hion, D. Y., Yu, J. S., Soane, D. S., Hooper, H. H. (1996) Electrophoresis of DNA in novel thermoreversible matrices. Electrophoresis 17, 1460–1469.

    Article  CAS  Google Scholar 

  20. Liang, D., Song, L., Zhou, S., Zaitsev, V. S., and Chu, B. (1999) Poly(N-isopropylacrylamide)-g-poly(ethyleneoxide) for high resolution and high speed separation of DNA by capillary electrophoresis. Electrophoresis, 20, 2856–2863.

    Article  CAS  Google Scholar 

  21. Heller, Ch. (2001) Principles of DNA separation with capillary electrophoresis. Electrophoresis 22, 629–643.

    Article  CAS  Google Scholar 

  22. Ghosal, S. (2004) Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25, 214–228.

    Article  CAS  Google Scholar 

  23. Horvath, J. and Dolnik, V. (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22, 644–655.

    Article  CAS  Google Scholar 

  24. Righetti, P.G., Gelfi, C., Verzola, B., and Castelletti, L. (2001) The state of dynamic coatings. Electrophoresis 22, 603–611.

    Article  CAS  Google Scholar 

  25. Liu, C. Y. (2001) Stationary phases for capillary electrophoresis and capillary electrochromatography. Electrophoresis 22, 612–628.

    Article  CAS  Google Scholar 

  26. Liu, C. Y. (2001) Stationary phases for capillary electrophoresis and capillary electrochromatography. Electrophoresis 22, 612–628.

    Article  CAS  Google Scholar 

Further Reading

  • The present chapter is a simple introduction to the physics of EOF and the control of EOF via polymer coating. The following references are highly recommended: (4) is perhaps the best review of the electrophoresis of macromolecules; (10) is a superb review of electrokinetic phenomena in microfluidic devices and covers more materials that we could explore here; (13) is an extensive review of polymer coating; (22) is a great survey of some of the mathematical aspects of EOF.

    Google Scholar 

Download references

Acknowledgments

K.K. would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and of NATO for a postdoctoral fellowship. GWS would like to thank NSERC for a Discovery Grant. F.T. would like to thank the University of Ottawa for an admission scholarship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Slater, G.W., Tessier, F., Kopecka, K. (2010). The Electroosmotic Flow (EOF). In: Hughes, M., Hoettges, K. (eds) Microengineering in Biotechnology. Methods in Molecular Biology, vol 583. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-106-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-106-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-381-7

  • Online ISBN: 978-1-60327-106-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics