Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 429))

Abstract

Fluorescence is highly sensitive to environment, and the distance separating fluorophores and quencher molecules can provide the basis for effective homogeneous nucleic acid hybridization assays. Molecular interactions leading to fluorescence quenching include collisions, ground state and excited state complex formation, and long-range dipole-coupled energy transfer. These processes are well understood and equations are provided for estimating the effects of each process on fluorescence intensity. Estimates for the fluorescein-tetramethylrhodamine donor-acceptor pair reveal the relative contributions of dipole-coupled energy transfer, collisional quenching, and static quenching in several common assay formats, and illustrate that the degree of quenching is dependent upon the hybridization complex formed and the manner of label attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy. Plenum Press, New York.

    Google Scholar 

  2. Valeur, B. (2002) Molecular Fluorescence: Principles and Applications. Wiley-VCH, Weinheim.

    Google Scholar 

  3. Morrison, L. (1999) Homogeneous detection of specific DNA sequences by fluorescence quenching and energy transfer. J. Fluores. 9, 187–196.

    Article  CAS  Google Scholar 

  4. Morrison, L. E. (2003) Fluorescence in nucleic acid hybridization assays. In Topics in Fluorescence Spectroscopy, vol 7 (Lakowicz, J. R., ed.), pp. 69–97, Kluwer Academic Publications, New York.

    Chapter  Google Scholar 

  5. Ebata, K., Masuko, M., Ohtani, H., and Kashiwasake-Jibu, M. (1995) Nucleic acid hybridization accompanied with excimer formation from two pyrene-labeled probes. Photochem. Photobiol. 62, 836–839.

    Article  CAS  PubMed  Google Scholar 

  6. Morrison, L. E. (1988) Time-resolved detection of energy transfer: Theory and application to immunoassays. Anal. Biochem. 174, 101–120.

    Article  CAS  PubMed  Google Scholar 

  7. Lakowicz, J. R. and Weber, G. (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuation in macromolecules. Biochemistry 12, 4161–4170.

    Article  CAS  PubMed  Google Scholar 

  8. Forster, T. (1959) Transfer mechanisms of electronic excitation. Disc. Faraday Soc. 27, 7–17.

    Article  Google Scholar 

  9. Morrison, L. E., Halder, T. C., and Stols, L. M. (1989) Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal. Biochem. 183, 231–244.

    Article  CAS  PubMed  Google Scholar 

  10. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

  11. Heller, M. J. and Morrison, L. E. (1985) Chemiluminescent and fluorescent probes for DNA hybridization systems. In Rapid Detection and Identification of Infectious Agents (Kingsbury, D. T. and Falkow, S., eds.), pp. 245–256, Academic Press, Orlando.

    Google Scholar 

  12. Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138.

    CAS  PubMed  Google Scholar 

  13. Lee, L. G., Connell, C. R., and Bloch, W. (1993) Allelic discrimination by nick-translation pcr with fluorogenic probes. Nucleic Acids Res. 21, 3761–3766.

    Article  CAS  PubMed  Google Scholar 

  14. Ishiguro, T., Saitoh, J., Yawata, H., Otsuka, M., Inoue, T., and Sugiura, Y. (1996) Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucleic Acids Res. 24, 4992–4997.

    Article  CAS  PubMed  Google Scholar 

  15. Abravaya, K., Huff, J., Marshall, R., et al. (2003) Molecular beacons as diagnsotic tools: technology and applications. Clin. Chem. Lab. Med. 41, 468–474.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Morrison, L.E. (2008). Basic Principles of Fluorescence and Energy Transfer. In: Marx, A., Seitz, O. (eds) Molecular Beacons: Signalling Nucleic Acid Probes, Methods, and Protocols. Methods in Molecular Biology, vol 429. Humana Press. https://doi.org/10.1007/978-1-60327-040-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-040-3_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-700-6

  • Online ISBN: 978-1-60327-040-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics