Skip to main content

Monitoring RNA–Ligand Interactions Using Isothermal Titration Calorimetry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

Summary

Isothermal titration calorimetry (ITC) is a biophysical technique that measures the heat evolved or absorbed during a reaction to report the enthalpy, entropy, stoichiometry of binding, and equilibrium association constant. A significant advantage of ITC over other methods is that it can be readily applied to almost any RNA–ligand complex without having to label either molecule and can be performed under a broad range of pH, temperature, and ionic concentrations. During our application of ITC to investigate the thermodynamic details of the interaction of a variety of compounds with the purine riboswitch, we have explored and optimized experimental parameters that yield the most useful and reproducible results for RNAs. In this chapter, we detail this method using the titration of an adenine-binding RNA with 2,6-diaminopurine (DAP) as a practical example. Our insights should be generally applicable to observing the interactions of a broad range of molecules with structured RNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mizoue, L. S., and Tellinghuisen, J. (2004). Calorimetric vs. van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba2+-crown ether complexation. Biophys. Chem. 110, 15–24.

    Article  PubMed  CAS  Google Scholar 

  2. Leulliot, N., and Varani, G. (2001). Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956.

    Article  PubMed  CAS  Google Scholar 

  3. Gilbert, S. D., Mediatore, S. J., and Batey, R. T. (2006). Modified pyrimidines specifically bind the purine riboswitch. J. Am. Chem. Soc. 128, 14214–14215.

    Article  PubMed  CAS  Google Scholar 

  4. Gilbert, S. D., Stoddard, C. D., Wise, S. J., and Batey, R. T. (2006). Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J. Mol. Biol. 359, 754–768.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, L., Kumar, A., Boykin, D. W., Bailly, C., and Wilson, W. D. (2002). Comparative thermodynamics for monomer and dimer sequence-dependent binding of a heterocyclic dication in the DNA minor groove. J. Mol. Biol. 317, 361–374.

    Article  PubMed  CAS  Google Scholar 

  6. Kaul, M., Barbieri, C. M., Srinivasan, A. R., and Pilch, D. S. (2007). Molecular determinants of antibiotic recognition and resistance by aminoglycoside phosphotransferase (3′)-IIIa: a calorimetric and mutational analysis. J. Mol. Biol. 369, 142–156.

    Article  PubMed  CAS  Google Scholar 

  7. Batey, R. T., Gilbert, S. D., and Montange, R. K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415.

    Article  PubMed  CAS  Google Scholar 

  8. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C., and Breaker, R. R. (2003). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586.

    Article  PubMed  CAS  Google Scholar 

  9. Feig, A. L. (2007). Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers 87, 293–301.

    Article  PubMed  CAS  Google Scholar 

  10. Kaul, M., Barbieri, C. M., and Pilch, D. S. (2005). Defining the basis for the specificity of aminoglycoside-rRNA recognition: a comparative study of drug binding to the A sites of Escherichia coli and human rRNA. J. Mol. Biol. 346, 119–134.

    Article  PubMed  CAS  Google Scholar 

  11. Kaul, M., and Pilch, D. S. (2002). Thermodynamics of aminoglycoside-rRNA recognition: the binding of neomycin-class aminoglycosides to the A site of 16S rRNA. Biochemistry 41, 7695–7706.

    Article  PubMed  CAS  Google Scholar 

  12. Pilch, D. S., Kaul, M., Barbieri, C. M., and Kerrigan, J. E. (2003). Thermodynamics of aminoglycoside-rRNA recognition. Biopolymers 70, 58–79.

    Article  PubMed  CAS  Google Scholar 

  13. Gilbert, S. D., Love, C. E., Edwards, A. L., and Batey, R. T. (2007). Mutational analysis of the purine riboswitch aptamer domain. Biochemistry 46, 13297–13309.

    Article  PubMed  CAS  Google Scholar 

  14. Bernacchi, S., Freisz, S., Maechling, C., Spiess, B., Marquet, R., Dumas, P., and Ennifar, E. (2007). Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res. 35, 7128–7139.

    Article  PubMed  CAS  Google Scholar 

  15. Diamond, J. M., Turner, D. H., and Mathews, D. H. (2001). Thermodynamics of three-way multibranch loops in RNA. Biochemistry 40, 6971–6981.

    Article  PubMed  CAS  Google Scholar 

  16. Mikulecky, P. J., Takach, J. C., and Feig, A. L. (2004). Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme. Biochemistry 43, 5870–5881.

    Article  PubMed  CAS  Google Scholar 

  17. Hammann, C., Cooper, A., and Lilley, D. M. (2001). Thermodynamics of ion-induced RNA folding in the hammerhead ribozyme: an isothermal titration calorimetric study. Biochemistry 40, 1423–1429.

    Article  PubMed  CAS  Google Scholar 

  18. Takach, J. C., Mikulecky, P. J., and Feig, A. L. (2004). Salt-dependent heat capacity changes for RNA duplex formation. J. Am. Chem. Soc. 126, 6530–6531.

    Article  PubMed  CAS  Google Scholar 

  19. Recht, M. I., and Williamson, J. R. (2001). Central domain assembly: thermodynamics and kinetics of S6 and S18 binding to an S15–RNA complex. J. Mol. Biol. 313, 35–48.

    Article  PubMed  CAS  Google Scholar 

  20. Recht, M. I., and Williamson, J. R. (2004). RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. J. Mol. Biol. 344, 395–407.

    Article  PubMed  CAS  Google Scholar 

  21. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987). Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798.

    Article  PubMed  CAS  Google Scholar 

  22. Montange, R. K., and Batey, R. T. (2006). Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175.

    Article  PubMed  CAS  Google Scholar 

  23. Gilbert, S. D., Montange, R. K., Stoddard, C. D., and Batey, R. T. (2006). Structural studies of the purine and SAM binding riboswitches. Cold Spring Harb. Symp. Quant. Biol. 71, 259–268.

    Article  PubMed  CAS  Google Scholar 

  24. Agalarov, S. C., Sridhar Prasad, G., Funke, P. M., Stout, C. D., and Williamson, J. R. (2000). Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science 288, 107–113.

    Article  PubMed  CAS  Google Scholar 

  25. Orr, J. W., Hagerman, P. J., and Williamson, J. R. (1998). Protein and Mg(2+)-induced conformational changes in the S15 binding site of 16S ribosomal RNA. J. Mol. Biol. 275, 453–464.

    Article  PubMed  CAS  Google Scholar 

  26. Mandal, M., and Breaker, R. R. (2004). Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat. Struct. Mol. Biol. 11, 29–35.

    Article  PubMed  CAS  Google Scholar 

  27. Turnbull, W. B., and Daranas, A. H. (2003). On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866.

    Article  PubMed  CAS  Google Scholar 

  28. Tellinghuisen, J. (2008). Isothermal titration calorimetry at very low c. Anal. Biochem. 373, 395–397.

    Article  PubMed  CAS  Google Scholar 

  29. Tellinghuisen, J. (2005). Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109, 20027–20035.

    Article  PubMed  CAS  Google Scholar 

  30. Mizoue, L. S., and Tellinghuisen, J. (2004). The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Anal. Biochem. 326, 125–127.

    Article  PubMed  CAS  Google Scholar 

  31. MicroCal, LLC. (2003), Northampton, MA.

    Google Scholar 

  32. Briggner, L. E., and Wadso, I. (1991). Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J. Biochem. Biophys Methods 22, 101–118.

    Article  PubMed  CAS  Google Scholar 

  33. Liu, Y., and Sturtevant, J. M. (1997). Significant discrepancies between van’t Hoff and calorimetric enthalpies. III. Biophys. Chem. 64, 121–126.

    Article  PubMed  CAS  Google Scholar 

  34. Tellinghuisen, J. (2005). Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal. Biochem. 343, 106–115.

    Article  PubMed  CAS  Google Scholar 

  35. Lemay, J. F., and Lafontaine, D. A. (2007). Core requirements of the adenine riboswitch aptamer for ligand binding. RNA 13, 339–350.

    Article  PubMed  CAS  Google Scholar 

  36. Wadso, I., and Goldberg, R. N. (2001). Standards in isothermal titration calorimetry. Pure Appl. Chem. 73, 1625–1639.

    Article  CAS  Google Scholar 

  37. Tellinghuisen, J. (2007). Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J. Phys. Chem. B 111, 11531–11537.

    Article  PubMed  CAS  Google Scholar 

  38. Batey, R. T., and Kieft, J. S. (2007). Improved native affinity purification of RNA. RNA 13, 1384–1389.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Deborah Wuttke and Jonas Fast for useful discussions on optimizing ITC experiments. This work was made possible by a Research Scholar Grant from the American Cancer Society to R.T.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Batey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gilbert, S., Batey, R. (2009). Monitoring RNA–Ligand Interactions Using Isothermal Titration Calorimetry . In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics