Skip to main content

Chromatin Immunoprecipitation Using Microarrays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 529))

Abstract

Chromatin immunoprecipitation (ChIP) is a powerful procedure to investigate the interactions between proteins and DNA. ChIP-chip combines chromatin immunoprecipitation and DNA microarray analysis to identify protein–DNA interactions that occur in vivo. This genome-wide analysis of protein–DNA association is carried out in several steps including chemical cross-linking, cell lysis, DNA fragmentation and immunoaffinity purification that allow the identification of DNA interactions and provide a powerful tool for genome-wide investigations. Immunoprecipitated DNA fragments associated with the desired protein are amplified, labelled and hybridized to DNA microarrays to detect enriched signals compared to a labelled reference sample.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Durand-Dubief, M., Sinha, I., Fagerstrom-Billai, F., Bonilla, C., Wright, A., Grunstein, M., and Ekwall, K. (2007) Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing. Embo J 26, 2477–88.

    Article  PubMed  CAS  Google Scholar 

  2. Fagerstrom-Billai, F., Durand-Dubief, M., Ekwall, K., and Wright, A. P. (2007) Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol Cell Biol 27, 1069–82.

    Article  PubMed  Google Scholar 

  3. Sinha, I., Wiren, M., and Ekwall, K. (2006) Genome-wide patterns of histone modifications in fission yeast. Chromosome Res 14, 95–105.

    Article  PubMed  CAS  Google Scholar 

  4. Walfridsson, J., Khorosjutina, O., Matikainen, P., Gustafsson, C. M., and Ekwall, K. (2007) A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. Embo J 26, 2868–79.

    Article  PubMed  CAS  Google Scholar 

  5. Wiren, M., Silverstein, R. A., Sinha, I., Walfridsson, J., Lee, H. M., Laurenson, P., Pillus, L., Robyr, D., Grunstein, M., and Ekwall, K. (2005) Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. Embo J 24, 2906–18.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu, X., Wiren, M., Sinha, I., Rasmussen, N. N., Linder, T., Holmberg, S., Ekwall, K., and Gustafsson, C. M. (2006) Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions. Mol Cell 22, 169–78.

    Article  PubMed  CAS  Google Scholar 

  7. Kurdistani, S. K., and Grunstein, M. (2003) In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31, 90–5.

    Article  PubMed  CAS  Google Scholar 

  8. Robyr, D., and Grunstein, M. (2003) Genomewide histone acetylation microarrays. Methods 31, 83–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kurdistani, S. K., Robyr, D., Tavazoie, S., and Grunstein, M. (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31, 248–54.

    Article  PubMed  CAS  Google Scholar 

  10. Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–37.

    Article  PubMed  CAS  Google Scholar 

  11. Euskirchen, G. M., Rozowsky, J. S., Wei, C. L., Lee, W. H., Zhang, Z. D., Hartman, S., Emanuelsson, O., Stolc, V., Weissman, S., Gerstein, M. B., Ruan, Y., and Snyder, M. (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies Genome Res 17, 898–909.

    Article  PubMed  CAS  Google Scholar 

  12. Hayashi, M., Katou, Y., Itoh, T., Tazumi, A., Yamada, Y., Takahashi, T., Nakagawa, T., Shirahige, K., and Masukata, H. (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. Embo J 26, 1327–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our laboratory is supported by grants from the Swedish Cancer Society, Swedish Research Council (VR) M Bergvalls stiftelse, Östersjöstiftelsen and EU ‘The Epigenome’ NoE network. We thank Jenna M. Bernstein for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Durand-Dubief, M., Ekwall, K. (2009). Chromatin Immunoprecipitation Using Microarrays. In: Dufva, M. (eds) DNA Microarrays for Biomedical Research. Methods in Molecular Biology, vol 529. Humana Press. https://doi.org/10.1007/978-1-59745-538-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-538-1_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-69-5

  • Online ISBN: 978-1-59745-538-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics