Skip to main content

Use of Residual Dipolar Couplings in Structural Analysis of Protein-Ligand Complexes by Solution NMR Spectroscopy

  • Protocol
  • First Online:
Micro and Nano Technologies in Bioanalysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Investigation of structure–function relationships in protein complexes, specifically protein–ligand interactions, carry great significance in elucidating the structural and mechanistic bases of molecular recognition events and their role in regulating cell processes. Nuclear magnetic resonance (NMR) spectroscopy is one of the leading structural and analytical techniques in in-depth studies of protein–ligand interactions. Recent advances in NMR methodology such as transverse relaxation–optimized spectroscopy (TROSY) and residual dipolar couplings (RDCs) measured in liquid crystalline alignment medium, offer a viable alternative to traditional nuclear Overhauser enhancement (NOE)-based approaches for structure determination of large protein complexes. RDCs provide a way to constrain the relative orientation of two molecules in complex with each other by aligning their independently determined order tensors. The potential for utilization of RDCs can be extended to proteins with multiple ligands or even multimeric protein–ligand complexes, where symmetry properties of the protein can be taken advantage of. Availability of effective RDC data collection and analysis protocols can certainly aid this process by their incorporation into structure calculation protocols using intramolecular and intermolecular orientational restraints. This chapter discusses in detail some of these protocols including methods for sample preparation in liquid crystalline media, NMR experiments for RDC data collection, as well as software tools for RDC data analysis and protein–ligand complex structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clore, G. M., and Gronenborn, A. M. (1998). NMR structure determination of proteins and protein complexes larger than 20 kDa. Current Opinion in Chemical Biology 2, 564–70

    Article  CAS  Google Scholar 

  2. Tugarinov, V., Hwang, P. M., and Kay, L. E. (2004). Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annual Review of Biochemistry 73, 107–46

    Article  CAS  Google Scholar 

  3. Tzakos, A. G., Grace, C. R. R., Lukavsky, P. J., and Riek, R. (2006). NMR techniques for very large proteins and RNAs in solution. Annual Review of Biophysics and Biomolecular Structure 35, 319–42

    Article  CAS  Google Scholar 

  4. Bonvin, A. M. J. J., Boelens, R., and Kaptein, R. (2005). NMR analysis of protein interactions. Current Opinion in Chemical Biology 9, 501–08

    Article  CAS  Google Scholar 

  5. Riek, R., Pervushin, K., and Wuthrich, K. (2000). TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends in Biochemical Sciences 25, 462–68

    Article  CAS  Google Scholar 

  6. van Dijk, A. D. J., de Vries, S. J., Dominguez, C., Chen, H., Zhou, H. X., and Bonvin, A. M. J. J. (2005). Data-driven docking: HADDOCK’s adventures in CAPRI. Proteins: Structure Function and Bioinformatics 60, 232–38

    Article  CAS  Google Scholar 

  7. Mackereth, C. D., Simon, B., and Sattler, M. (2005). Extending the size of protein-RNA complexes studied by nuclear magnetic resonance spectroscopy. Chembiochem 6, 1578–84

    Article  CAS  Google Scholar 

  8. Tang, C., Iwahara, J., and Clore, G. M. (2006). Visualization of transient encounter complexes in protein-protein association. Nature 444, 383–86

    Article  CAS  Google Scholar 

  9. Sprangers, R., Velyvis, A., and Kay, L. E. (2007). Solution NMR of supramolecular complexes: providing new insights into function. Nature Methods 4, 697–703

    Article  CAS  Google Scholar 

  10. Mayer, M., and Meyer, B. (1999). Characterization of ligand binding by saturation transfer difference NMR. Spectroscopy. Angewandte Chemie-International Edition 38, 1784–88

    Article  CAS  Google Scholar 

  11. Wyss, D. F., McCoy, M. A., and Senior, M. M. (2002). NMR-based approaches for lead discovery. Current Opinion in Drug Discovery & Development 5, 630–47

    CAS  Google Scholar 

  12. Betz, M., Saxena, K., and Schwalbe, H. (2006). Biomolecular NMR: a chaperone to drug discovery. Current Opinion in Chemical Biology 10, 219–25

    Article  CAS  Google Scholar 

  13. Vajda, S., and Guarnieri, F. (2006). Characterization of protein–ligand interaction sites using experimental and computational methods. Current Opinion in Drug Discovery & Development 9, 354–62

    CAS  Google Scholar 

  14. Pintacuda, G., John, M., Su, X. C., and Otting, G. (2007). NMR structure determination of protein–ligand complexes by lanthanide labeling. Accounts of Chemical Research 40, 206–12

    Article  CAS  Google Scholar 

  15. Zabell, A. P. R., and Post, C. B. (2002). Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints. Proteins: Structure Function and Genetics 46, 295–307

    Article  CAS  Google Scholar 

  16. Fischer, M. W. F., Losonczi, J. A., Weaver, J. L., and Prestegard, J. H. (1999). Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry 38, 9013–22

    Article  CAS  Google Scholar 

  17. Hus, J. C., Marion, D., and Blackledge, M. (2000). De novo determination of protein structure by NMR using orientational and long-range order restraints. Journal of Molecular Biology 298, 927–36

    Article  CAS  Google Scholar 

  18. Jain, N. U., Wyckoff, T. J. O., Raetz, C. R. H., and Prestegard, J. H. (2004). Rapid analysis of large protein–protein complexes using NMR-derived orientational constraints: the 95 kDa complex of LpxA with acyl carrier protein. Journal of Molecular Biology 343, 1379–89

    Article  CAS  Google Scholar 

  19. Lipsitz, R. S., and Tjandra, N. (2004). Residual dipolar couplings in NMR structure analysis. Annual Review of Biophysics and Biomolecular Structure 33, 387–413

    Article  CAS  Google Scholar 

  20. Bax, A., and Grishaev, A. (2005). Weak alignment NMR: a hawk-eyed view of biomolecular structure. Current Opinion in Structural Biology 15, 563–70

    Article  CAS  Google Scholar 

  21. Getz, M., Sun, X. Y., Casiano-Negroni, A., Zhang, Q., and Al-Hashimi, H. M. (2007). NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers 86, 384–402

    Article  CAS  Google Scholar 

  22. Prestegard, J. H., Al-Hashimi, H. M., and Tolman, J. R. (2000). NMR structures of biomolecules using field oriented media and residual dipolar couplings. Quarterly Reviews of Biophysics 33, 371–424

    Article  CAS  Google Scholar 

  23. Clore, G. M. (2000). Accurate and rapid docking of protein–protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization. Proceedings of the National Academy of Sciences of the United States of America 97, 9021–25

    Article  CAS  Google Scholar 

  24. McCoy, M. A., and Wyss, D. F. (2002). Structures of protein–protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations. Journal of the American Chemical Society 124, 2104–5

    Article  CAS  Google Scholar 

  25. Dominguez, C., Boelens, R., and Bonvin, A. M. J. J. (2003). HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society 125, 1731–37

    Article  CAS  Google Scholar 

  26. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003). The Xplor-NIH NMR molecular structure determination package. Journal of Magnetic Resonance 160, 65–73

    Article  CAS  Google Scholar 

  27. Fahmy, A., and Wagner, G. (2002). TreeDock: a tool for protein docking based on minimizing van der Waals energies. Journal of the American Chemical Society 124, 1241–50

    Article  CAS  Google Scholar 

  28. Tjandra, N., and Bax, A. (1997). Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–14

    Article  CAS  Google Scholar 

  29. Hansen, M. R., Hanson, P., and Pardi, A. (2000). Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. RNA–Ligand Interactions Pt A 317, 220–40

    Article  CAS  Google Scholar 

  30. Fleming, K., Gray, D., Prasannan, S., and Matthews, S. (2000). Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. Journal of the American Chemical Society 122, 5224–25

    Article  CAS  Google Scholar 

  31. Sass, H. J., Musco, G., Stahl, S. J., Wingfield, P. T., and Grzesiek, S. (2000). Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. Journal of Biomolecular NMR 18, 303–09

    Article  CAS  Google Scholar 

  32. Ruckert, M., and Otting, G. (2000). Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. Journal of the American Chemical Society 122, 7793–97

    Article  Google Scholar 

  33. Prestegard, J. H., Bougault, C. M., and Kishore, A. I. (2004). Residual dipolar couplings in structure determination of biomolecules. Chemical Reviews 104, 3519–40

    Article  CAS  Google Scholar 

  34. Prestegard, J. H., and Kishore, A. I. (2001). Partial alignment of biomolecules: an aid to NMR characterization. Current Opinion in Chemical Biology 5, 584–90

    Article  CAS  Google Scholar 

  35. Yang, D. W., Venters, R. A., Mueller, G. A., Choy, W. Y., and Kay, L. E. (1999). TROSY-based HNCO pulse sequences for the measurement of (HN)-H-1-N-15, N-15-(CO)-C-13, (HN)-H-1-(CO)-C-13, (CO)-C-13-C-13(alpha) and (HN)-H-1-C-13(alpha) dipolar couplings in N-15, C-13, H-2-labeled proteins. Journal of Biomolecular NMR 14, 333–43

    Article  Google Scholar 

  36. Jain, N. U., Noble, S., and Prestegard, J. H. (2003). Structural characterization of a mannose-binding protein-trimannoside complex using residual dipolar couplings. Journal of Molecular Biology 328, 451–62

    Article  CAS  Google Scholar 

  37. Losonczi, J. A., Andrec, M., Fischer, M. W. F., and Prestegard, J. H. (1999). Order matrix analysis of residual dipolar couplings using singular value decomposition. Journal of Magnetic Resonance 138, 334–42

    Article  CAS  Google Scholar 

  38. Zweckstetter, M., and Bax, A. (2000). Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. Journal of the American Chemical Society 122, 3791–92

    Article  CAS  Google Scholar 

  39. Dosset, P., Hus, J. C., Marion, D., and Blackledge, M. (2001). A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. Journal of Biomolecular NMR 20, 223–31

    Article  CAS  Google Scholar 

  40. Valafar, H., and Prestegard, J. H. (2004). REDCAT: a residual dipolar coupling analysis tool. Journal of Magnetic Resonance 167, 228–41

    Article  CAS  Google Scholar 

  41. Goodsell, D. S., Morris, G. M., and Olson, A. J. (1996). Automated docking of flexible ligands: applications of AutoDock. Journal of Molecular Recognition 9, 1–5

    Article  CAS  Google Scholar 

  42. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., and Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639–62

    Article  CAS  Google Scholar 

  43. Sayers, E. W., and Prestegard, J. H. (2002). Conformation of a trimannoside bound to mannose-binding protein by nuclear magnetic resonance and molecular dynamics simulations. Biophysical Journal 82, 2683–99

    Article  CAS  Google Scholar 

  44. Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996). Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–34

    Article  CAS  Google Scholar 

  45. Kaneko, M., Alvarez-Manilla, G., Kamar, M., Lee, I., Lee, J. K., Troupe, K., Zhang, W. J., Osawa, M., and Pierce, M. (2003). A novel beta(1,6)-N-acetylglucosaminyltransferase V (GnT-VB). FEBS Letters 554, 515–19

    Article  CAS  Google Scholar 

  46. Pierce, M., Arango, J., Tahir, S. H., and Hindsgaul, O. (1987). Activity of Udp-Glcnac – alpha-mannoside beta-(1,6)N-acetylglucosaminyltransferase (Gnt V) in cultured-cells using a synthetic trisaccharide acceptor. Biochemical and Biophysical Research Communications 146, 679–84

    Article  CAS  Google Scholar 

  47. Jain, N. U., Venot, A., Umemoto, K., Leffler, H., and Prestegard, J. H. (2001). Distance mapping of protein-binding sites using spin-labeled oligosaccharide ligands. Protein Science 10, 2393–400

    Article  CAS  Google Scholar 

  48. Losonczi, J. A., and Prestegard, J. H. (1998). Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. Journal of Biomolecular NMR 12, 447–51

    Article  CAS  Google Scholar 

  49. Ottiger, M., and Bax, A. (1999). Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. Journal of Biomolecular NMR 13, 187–91

    Article  CAS  Google Scholar 

  50. Seidel, R. D., Zhuang, T. D., and Prestegard, J. H. (2007). Bound-state residual dipolar couplings for rapidly exchanging ligands of His-tagged proteins. Journal of the American Chemical Society 129, 4834–39

    Article  CAS  Google Scholar 

  51. Zhuang, T. D., Leffler, H., and Prestegard, J. H. (2006). Enhancement of bound-state residual dipolar couplings: conformational analysis of lactose bound to Galectin-3. Protein Science 15, 1780–90

    Article  CAS  Google Scholar 

  52. Macnaughtan, M. A., Kamar, M., Alvarez-Manilla, G., Venot, A., Glushka, J., Pierce, J. M., and Prestegard, J. H. (2007). NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V. Journal of Molecular Biology. 366, 1266–81

    Article  CAS  Google Scholar 

Download references

AU

The author thanks Dr. James Prestegard and Dr. Michael Pierce (University of Georgia) for access to samples and data on GnTV-substrate interactions. Portions of this work were supported by National Institutes of Health (NIH) grants GM03325 and RR005351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin U. Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jain, N.U. (2009). Use of Residual Dipolar Couplings in Structural Analysis of Protein-Ligand Complexes by Solution NMR Spectroscopy. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics