Skip to main content

Selective Immortalization of Tumor-Specific T Cells to Establish Long-Term T-Cell Lines Maintaining Primary Cell Characteristics

  • Protocol
Book cover Inflammation and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 511))

Summary

Antigen-specific T cells play a key role in cellular immune response against cancer. The ability to isolate, maintain, and characterize tumor-specific T cells is a prerequisite to studying anticancer immune response and developing novel strategies for cancer immunotherapy. However, the life span of human T cells in vitro is usually short and is limited by the onset of cellular senescence. To establish long-term, antigen-specific T-cell lines and clones, we selectively immortalized antigen-responsive T cells from human peripheral blood mononuclear cells (PBMCs). PBMCs were stimulated with antigens, and then infected with a murine leukemia virus-based retroviral vector carrying an immortalizing gene, the human telomerase-reverse transcriptase gene. Since such vectors can only integrate in dividing cells, only antigen-activated T cells are efficiently transduced. Using this approach, we generated immortalized T-cell lines that maintained strictly IL-2-dependent growth and MHC-restricted, antigen-specific responsiveness, some of which have been in continuous culture for longer than 1 year, far in excess of the survival of parallel control nonimmortalized cultures. These lines showed antigen-specific proliferation with induced cytokine and chemokine production, and, in the case of CD8+ T-cell lines, antigen-specific cytolytic activity. When applied to the tumor antigen-specific T cells, the approach provides a convenient, reproducible means for generating a stable, continuously renewable source of antigen-specific T lymphocytes for a variety of studies on anticancer immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gattinoni, L., Powell, D.J., Jr., Rosenberg, S.A., and Restifo, N.P. (2006) Adoptive immu-notherapy for cancer: building on successNat Rev Immunol6, 383–93.

    Article  CAS  PubMed  Google Scholar 

  2. Kershaw, M.H., Trapani, J.A., and Smyth, M.J. (1995) Cytotoxic lymphocytes: redirecting the cell-mediated immune response for the therapy of cancerTher Immunol2, 173–81.

    CAS  PubMed  Google Scholar 

  3. Oliver, R.T., and Nouri, A.M. (1992) T cell immune response to cancer in humans and its relevance for immunodiagnosis and therapyCancer Surv13, 173–204.

    CAS  PubMed  Google Scholar 

  4. Schuster, M., Nechansky, A., and Kircheis, R. (2006) Cancer immunotherapyBiotechnol J1, 138–47.

    Article  CAS  PubMed  Google Scholar 

  5. Thyphronitis, G., and Koutsilieris, M. (2004) Boosting the immune response: an alternative combination therapy for cancer patientsAnti-cancer Res24, 2443–53.

    CAS  Google Scholar 

  6. Castelli, C., and Maeurer, M.J. (2002) The T-cell response in patients with cancerAdv Cancer Res86, 149–93.

    Article  CAS  PubMed  Google Scholar 

  7. Gillis, S., Baker, P.E., Ruscetti, F.W., and Smith, K.A. (1978) Long-term culture of human antigen-specific cytotoxic T-cell linesJ Exp Med148, 1093–8.

    Article  CAS  PubMed  Google Scholar 

  8. Goldberg, D., Green, A., Gottlieb, A.B., Crow, M.K., Lewison, A., and Friedman, S.M. (1985) Cloned allospecific human helper T cell lines induce an MHC-restricted proliferative response by resting B cellsJ Immunol135, 1012–9.

    CAS  PubMed  Google Scholar 

  9. Mehta-Damani, A., Markowicz, S., and Engleman, E.G. (1995) Generation of antigen-specific CD4+ T cell lines from naive precursorsEur J Immunol25, 1206–11.

    Article  CAS  PubMed  Google Scholar 

  10. Nutman, T.B., Ottesen, E.A., Fauci, A.S., and Volkman, D.J. (1984) Parasite antigen-specifichuman T cell lines and clones. Major histocom-patibility complex restriction and B cell helper functionJ Clin Invest73, 1754–62.

    Article  CAS  PubMed  Google Scholar 

  11. Barsov, E.V., Andersen, H., Coalter, V.J., Carrington, M., Lifson, J.D., and Ott, D.E. (2006) Capture of antigen-specific T lymphocytes from human blood by selective immortalization to establish long-term T-cell lines maintaining primary cell characteristicsImmunol Lett105, 26–37.

    Article  CAS  PubMed  Google Scholar 

  12. Andersen, H., Barsov, E.V., Trivett, M.T., et al. (2007) Transduction with human telomer-ase reverse transcriptase immortalizes a rhesus macaque CD8+ T cell clone with maintenance of surface marker phenotype and functionAIDS Res Hum Retroviruses23, 456–65.

    Article  CAS  PubMed  Google Scholar 

  13. Andreadis, S., Fuller, A.O., and Palsson, B.O. (1998) Cell cycle dependence of retroviral transduction: An issue of overlapping time scalesBiotechnol Bioeng58, 272–81.

    Article  CAS  PubMed  Google Scholar 

  14. Fischinger, P.F., Tuttle-Fuller, N., Huper, G., and Bolognesi, D.P. (1975) Mitosis is required for production of murine leukemia virus and structural proteins during de novo infectionJ Virol16, 267–74.

    CAS  PubMed  Google Scholar 

  15. Lewis, P.F., and Emerman, M. (1994) Passage through mitosis is required for oncoretrovi-ruses but not for the human immunodeficiency virusJ Virol68, 510–6.

    CAS  PubMed  Google Scholar 

  16. Roe, T., Reynolds, T.C., Yu, G., and Brown, P.O. (1993) Integration of murine leukemia virus DNA depends on mitosisEMBO J12, 2099–108.

    CAS  PubMed  Google Scholar 

  17. Hedfors, I.A., Beckstrom, K.J., Benati, C., Bon-ini, C., and Brinchmann, J.E. (2005) Retrovirus mediated gene transduction of human T-cell subsetsCancer Immunol Immunother54, 759–68.

    Article  PubMed  Google Scholar 

  18. Lamana, M.L., Bueren, J.A., Vicario, J.L., and Balas, A. (2004) Functional and pheno-typic variations in human T cells subjected to retroviral-mediated gene transferGene Ther11, 474–82.

    Article  CAS  PubMed  Google Scholar 

  19. O'Brien, T.A., Tuong, D.T., Basso, L.M., McIvor, R.S., and Orchard, P.J. (2006) Coex-pression of the uracil phosphoribosyltransferase gene with a chimeric human nerve growth factor receptor/cytosine deaminase fusion gene, using a single retroviral vector, augments cyto-toxicity of transduced human T cells exposed to 5-fluorocytosineHum Gene Ther17, 518–30.

    Article  PubMed  Google Scholar 

  20. Selski, D.J., and Clohisy, D.R. (2006) A customized retroviral vector confers marker gene expression in osteoclast lineage cellsJ Cell Biochem97, 641–50.

    Article  CAS  PubMed  Google Scholar 

  21. Kadota, S., Kanayama, T., Miyajima, N., Takeuchi, K., and Nagata, K. (2005) Enhancing of measles virus infection by magnetofec-tionJ Virol Methods128, 61–6.

    Article  CAS  PubMed  Google Scholar 

  22. Huth, S., Lausier, J., Gersting, S.W., et al. (2004) Insights into the mechanism of mag-netofection using PEI-based magnetofectins for gene transferJ Gene Med6, 923–36.

    Article  CAS  PubMed  Google Scholar 

  23. Krotz, F., de Wit, C., Sohn, H.Y., et al. (2003) Magnetofection – a highly efficient tool for antisense oligonucleotIDe delivery in vitro and in vivoMol Ther7, 700–10.

    Article  CAS  PubMed  Google Scholar 

  24. Plank, C., Scherer, F., Schillinger, U., Bergemann, C., and Anton, M. (2003) Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fieldsJ Liposome Res13, 29–32.

    Article  CAS  PubMed  Google Scholar 

  25. Plank, C., Schillinger, U., Scherer, F., et al. (2003) The magnetofection method: using magnetic force to enhance gene deliveryBiol Chem384, 737–47.

    Article  CAS  PubMed  Google Scholar 

  26. Scherer, F., Anton, M., Schillinger, U., et al. (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivoGene Ther9, 102–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank David Ott, Claes Öhlén, and Jeffrey Lifson for their advice and encouragement and Matthew Trivett for excellent technical assistance. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. NO1-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barsov, E.V. (2009). Selective Immortalization of Tumor-Specific T Cells to Establish Long-Term T-Cell Lines Maintaining Primary Cell Characteristics. In: Kozlov, S.V. (eds) Inflammation and Cancer. Methods in Molecular Biology™, vol 511. Humana Press. https://doi.org/10.1007/978-1-59745-447-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-447-6_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-14-5

  • Online ISBN: 978-1-59745-447-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics