Skip to main content

In Vitro Vascularization of Human Connective Microtissues

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Vascularization is one of the most central processes enabling multicellular life. Owing to the complexity of vascularization regulatory networks, minor control imbalances often have severe pathologic consequences ranging from ischemic diseases to cancer. Tissue engineers are immediately confronted with vascularization as artificial tissues of a clinically relevant size require a vascular system to ensure vital physiologic logistics throughout the entire tissue and to enable rapid connection to the host vasculature following implantation. Using human umbilical vein endothelial cells (HUVECs) coated onto a human aortic fibroblast (HAF) core microtissue generated by gravity-enforced self-assembly in hanging drops, we created a tissue-culture system for studying capillary network formation. We provide comprehensive technical insight into the design and analysis of prototype vascularization in multicell-type-based microtissues. Detailed understanding of generic processes managing capillary formation in human tissue culture may foster advances in the development of clinical tissue implants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Griffith, L. G. and Naughton, G. (2002) Tissue engineering – current challenges and expanding opportunities. Science 295, 1009–1014.

    Article  CAS  Google Scholar 

  2. Hollister, S. J. (2005) Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524.

    Article  CAS  Google Scholar 

  3. Lutolf, M. P. and Hubbell, J. A. (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55.

    Article  CAS  Google Scholar 

  4. Neuenschwander, S. and Hoerstrup, S. P. (2004) Heart valve tissue engineering. Transpl. Immunol. 12, 359–365.

    Article  CAS  Google Scholar 

  5. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  Google Scholar 

  6. Vogel, V. and Baneyx, G. (2003) The tissue engineering puzzle: a molecular perspective. Annu. Rev. Biomed. Eng. 5, 441–463.

    Article  CAS  Google Scholar 

  7. Jakab, K., Neagu, A., Mironov, V., Markwald, R. R., and Forgacs, G. (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. U. S. A. 101, 2864–2869.

    Article  CAS  Google Scholar 

  8. Wang, F., Dumstrei, K., Haag, T., and Hartenstein, V. (2004) The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev. Biol. 270, 350–363.

    Article  CAS  Google Scholar 

  9. Duguay, D., Foty, R. A., and Steinberg, M. S. (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323.

    Article  CAS  Google Scholar 

  10. Foty, R. A. and Steinberg, M. S. (2005) The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263.

    Article  CAS  Google Scholar 

  11. Steinberg, M. S. (1963) Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408.

    Article  CAS  Google Scholar 

  12. Kelm, J. M., Diaz Sanchez-Bustamante, C., Ehler, E., Hoerstrup, S. P., Djonov, V., Ittner, L., and Fussenegger, M. (2005) VEGF profiling and angiogenesis in human microtissues. J. Biotechnol. 118, 213–229.

    Article  CAS  Google Scholar 

  13. Messerli, J. M., van der Voort, H. T., Rungger-Brandle, E., and Perriard, J. C. (1993) Three-dimensional visualization of multi-channel volume data: the amSFP algorithm. Cytometry 14, 725–735.

    Article  CAS  Google Scholar 

  14. Keller, G. M. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.

    Article  CAS  Google Scholar 

  15. Kelm, J. M., Ehler, E., Nielsen, L. K., Schlatter, S., Perriard, J. C., and Fussenegger, M. (2004) Design of artificial myocardial microtissues. Tissue Eng. 10, 201–214.

    Article  CAS  Google Scholar 

  16. Kelm, J. M., and Fussenegger, M. (2004) Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol. 22, 195–202.

    Article  CAS  Google Scholar 

  17. Kelm, J. M., Ittner, L. M., Born, W., Djonov, V., and Fussenegger, M. (2006) Self-assembly of sensory neurons into ganglia-like microtissues. J. Biotechnol. 121, 86–101.

    Article  CAS  Google Scholar 

  18. Layer, P. G., Robitzki, A., Rothermel, A., and Willbold, E. (2002) Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci. 25, 131–134.

    Article  CAS  Google Scholar 

  19. Timmins, N. E., Dietmair, S., and Nielsen, L. K. (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7, 97–103.

    Article  Google Scholar 

  20. Gerber, H. P., Hillan, K. J., Ryan, A. M., Kowalski, J., Keller, G. A., Rangell, L., Wright, B. D., Radtke, F., Aguet, M., and Ferrara, N. (1999) VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159.

    CAS  Google Scholar 

  21. Ferrara, N. and Alitalo, K. (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–1364.

    Article  CAS  Google Scholar 

  22. Carmeliet, P., Ng, Y. S., Nuyens, D., Theilmeier, G., Brusselmans, K., Cornelissen, I., Ehler, E., Kakkar, V. V., Stalmans, I., Mattot, V., Perriard, J. C., Dewerchin, M., Flameng, W., Nagy, A., Lupu, F., Moons, L., Collen, D., D’Amore, P. A., and Shima, D. T. (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat. Med. 5, 495–502.

    Article  CAS  Google Scholar 

  23. Wong, A. K., Alfert, M., Castrillon, D. H., Shen, Q., Holash, J., Yancopoulos, G. D., and Chin, L. (2001) Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc. Natl. Acad. Sci. U. S. A. 98, 7481–7486.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Kelm, J.M., Moritz, W., Schmidt, D., Hoerstrup, S.P., Fussenegger, M. (2007). In Vitro Vascularization of Human Connective Microtissues. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics