Skip to main content

Myocardial Restoration and Tissue Engineering of Heart Structures

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

The restoration or de novo engineering of heart structures poses a challenge because of the unique structure and physical properties of the heart. The heart is a heterogeneous, complex helical structure with asymmetric and anisotropic features. Hence, it is variably built and consists of spiraling muscle bands (first described by Torrent-Guasp), valves, coronary vessels, and a conduction system. Therefore, successful construction of muscular or valvular grafts needs to meet specific prerequisites, such as mechanical stability, optimal porosity, and contractile function. A series of studies have reported on various mixtures of scaffolds and (stem) cells and subsequent production of spontaneously contractile cardiac grafts in vitro. In vivo studies have provided evidence of engraftment of such bioartificial myocardial grafts and of improved heart function of the host. Two fundamental types of bioartificial/engineered valves have been reported: decellularized xenogeneic valves and recellularized valves with the recipient’s own cells. Large-scale clinical results are awaited. Finally, bioartificial vessels are being produced, either through de novo construction from collagens and cells or from previously harvested recipient’s own fibroblasts and endothelial cells. The main goal envisioned here is long-term patency following implantation in vivo. This review surveys upon recent developments and indicates caveats in the field of tissue engineering of cardiac, valvular, and vascular structures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Buckberg, G. D. (2002) Basic science review: the helix and the heart. J. Thorac. Cardiovasc. Surg. 124, 863–883.

    Article  Google Scholar 

  2. Buckberg, G. D., Coghlan, H. C., and Torrent-Guasp. F. (2001) The structure and function of the helical heart and its buttress wrapping. V. Anatomic and physiologic considerations, in the healthy and failing heart. Semin. Thorac. Cardiovasc. Surg. 13, 358–385 (review).

    CAS  Google Scholar 

  3. Pasumarthi, K. B. and Field, L. J. (2002) Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054.

    Article  CAS  Google Scholar 

  4. Moscona, A. (1959) Tissues from dissociated cells. Sci. Am. 200, 132–134.

    Article  CAS  Google Scholar 

  5. Moscona, A. and Moscona, H. (1952) The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J. Anat. 86, 287–301.

    CAS  Google Scholar 

  6. Eschenhagen, T. and Zimmermann, W. H. (2005) Engineering myocardial tissue. Circ. Res. 97(12), 1220–1231.

    Article  CAS  Google Scholar 

  7. Leor, J. and Cohen, S. (2004) Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann. N. Y. Acad. Sci. 1015, 312–319 (review).

    Article  Google Scholar 

  8. Leor, J., Amsalem, Y., and Cohen, S. (2005) Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 105(2), 151–163 (review).

    Article  CAS  Google Scholar 

  9. Barron, V., Lyons, E., Stenson-Cox, C., McHugh, P. E., and Pandit, A. (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann. Biomed. Eng. 31(9), 1017–1030 (review).

    Article  CAS  Google Scholar 

  10. Shachar, M. and Cohen, S. (2003) Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors. Heart Fail. Rev. 8, 271–276 (review).

    Article  CAS  Google Scholar 

  11. Sikavitsas, V. I., Bancroft, G. N., and Mikos, A. G. (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res. 62, 136–148.

    Article  CAS  Google Scholar 

  12. Bursac, N., Papadaki, M., White, J. A., Eisenberg, S. R., Vunjak-Novakovic, G., and Freed, L. E. (2003) Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9, 1243–1253.

    Article  CAS  Google Scholar 

  13. Kofidis, T., Lenz, A., Boublik, J., Akhyari. P., Wachsmann. B., Mueller-Stahl. K., Hofmann, M., and Haverich, A. (2003) Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials 24, 5009–5014.

    Article  CAS  Google Scholar 

  14. Akhyari, P., Fedak, P. W., Weisel, R. D., Lee, T. Y., Verma, S., Mickle, D. A., and Li, R. K. (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106 (12 Suppl. 1), I137–I142.

    Google Scholar 

  15. Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., and Eschenhagen, T. (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230.

    Article  CAS  Google Scholar 

  16. Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H. P., Kraft, T., Leyh, R., and Haverich, A. (2002) In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124, 63–69.

    Article  CAS  Google Scholar 

  17. Kofidis, T., Lebl, D. R., Martinez, E. C., Hoyt, G., Tanaka, M., and Robbins R. C. (2005) Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112(9 Suppl.), I173–I177.

    Google Scholar 

  18. Cannizzaro, S. M., Padera, R. F., Langer, R., Rogers, R. A., lack, F. E., Davies, M. C., Tendler, S. J., and Shakesheff, K. M. (1998) A novel biotinylated degradable polymer for cell interactive applications. Biotechnol. Bioeng. 58, 529–535.

    Article  CAS  Google Scholar 

  19. Lee, C. R., Grad, S., Gorna, K., Gogolewski, S., Goessl, A., and Alini, M. (2005) Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Tissue Eng. 11, 1562–1573.

    Article  CAS  Google Scholar 

  20. Jaquiery, C., Schaeren, S., Farhadi, J., Mainil-Varlet, P., Kunz, C., Zeilhofer, H. F., Heberer, M., and Martin, I. (2005) In vitro osteogenic differentiation and in vivo bone-forming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells. Ann. Surg. 242, 859–867, discussion 867–868.

    Article  Google Scholar 

  21. Lim, J. Y., Taylor, A. F., Li, Z., Vogler E. A., and Donahue H. J. (2005) Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics. Tissue Eng. 11, 19–29.

    Article  CAS  Google Scholar 

  22. Mauney, J. R., Jaquiery, C., Volloch, V., Heberer, M., Martin, I., and Kaplan D. L. (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bonescaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26, 3173–3185.

    Article  CAS  Google Scholar 

  23. Rosso, F., Giordano, A., Barbarisi, M., and Barbarisi, A. (2004) From cell-ECM interactions to tissue engineering. J. Cell Physiol. 199, 174–180 (review).

    Article  CAS  Google Scholar 

  24. Eschenhagen, T. and Zimmermann, W. H. (2005) Engineering myocardial tissue. Circ. Res. 97, 1220–1231.

    Article  CAS  Google Scholar 

  25. Rabkin, E. and Schoen, F. J. (2002) Cardiovascular tissue engineering. Cardiovasc. Pathol. 11, 305–317.

    Article  Google Scholar 

  26. Bouhadir, K. H., Lee, K. Y., Alsberg, E., Damm, K. L., Anderson, K. W., and Mooney, D. J. (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950.

    Article  CAS  Google Scholar 

  27. Khang, G., Lee, S. J., Lee, J. H., Kim, Y. S., and Lee, H. B. (1999) Interaction of fibroblast cells on poly(lactide-co-glycolide) surface with wettability chemogradient. Biomed. Mater. Eng. 9, 179–187.

    CAS  Google Scholar 

  28. Karageorgiou, V. and Kaplan, D. (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (review).

    Article  CAS  Google Scholar 

  29. Kelm, J. M., Diaz Sanchez-Bustamante, C., Ehler, E., Hoerstrup, S. P., Djonov, V., Ittner, L., and Fussenegger, M. (2005) VEGF profiling and angiogenesis in human microtissues. J. Biotechnol. 118, 213–229.

    Article  CAS  Google Scholar 

  30. Yao, C., Prevel, P., Koch, S., Schenck, P., Noah, E. M., Pallua, N., and Steffens, G. (2004) Modification of collagen matrices for enhancing angiogenesis. Cells Tissues Organs 178, 189–196.

    Article  CAS  Google Scholar 

  31. Narmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D., and Lee, R. T. (2004) Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110, 962–968.

    Article  Google Scholar 

  32. Marui, A., Kanematsu, A., Yamahara, K., Doi, K., Kushibiki, T., Yamamoto, M., Itoh, H., Ikeda, T., Tabata, Y., and Komeda, M. (2005) Simultaneous application of basic fibroblast growth factor and hepatocyte growth factor to enhance the blood vessels formation. J. Vasc. Surg. 41, 82–90.

    Article  Google Scholar 

  33. Ito, A., Ino, K., Hayashida, M., Kobayashi, T., Matsunuma, H., Kagami, H., Ueda, M., and Honda, H. (2005) Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 11, 1553–1561.

    Article  CAS  Google Scholar 

  34. Shimizu, K., Ito, A., and Honda, H. (2005) Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. October 21 (Epub ahead of print).

    Google Scholar 

  35. Papadaki, M., Bursac, N., Langer, R., Merok, J., Vunjak-Novakovic, G., and Freed, L. E. (2001) Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–H178.

    CAS  Google Scholar 

  36. Bursac, N., Papadaki, M., Cohen, R. J., Schoen, F. J., Eisenberg, S. R., Carrier, R., Vunjak-Novakovic, G., and Freed, L. E. (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. 277 (2 Pt. 2), 433–444.

    Google Scholar 

  37. Cohen, S. and Leor, J. (2004) Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: constructing a living human heart patch. Sci. Am. 291, 44–51.

    Article  Google Scholar 

  38. Zimmermann, W. H. and Eschenhagen, T. (2003) Cardiac tissue engineering for replacement therapy. Heart Fail. Rev. 8, 259–269 (review).

    Article  CAS  Google Scholar 

  39. Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didie, M., Munzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., and Eschenhagen T. (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230.

    Article  CAS  Google Scholar 

  40. Ozawa, T., Mickle, D. A., Weisel, R. D., Matsubayashi, K., Fujii, T., Fedak, P. W., Koyama, N., Ikada, Y., and Li, R. K. (2004) Tissue-engineered grafts matured in the right ventricular outflow tract. Cell Transplant. 13, 169–177.

    Google Scholar 

  41. Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Ozawa, S. and Li, R. K. (2002) Optimal biomaterial for creation of autologous cardiac grafts. Circulation 106(12 Suppl. 1), I176–I182.

    Google Scholar 

  42. Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., Fischer, S., Eschenhagen, T., Kubis, H. P., Kraft, T., Leyh, R., and Haverich, A. (2002) In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124, 63–69.

    Article  CAS  Google Scholar 

  43. Krupnick, A. S., Balsara, K. R., Kreisel, D., Riha, M., Gelman, A. E., Estives, M. S., Amin, K. M., Rosengard, B. R., and Flake A. W. (2004) Fetal liver as a source of autologous progenitor cells for perinatal tissue engineering. Tissue Eng. 10, 723–735.

    Article  Google Scholar 

  44. Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., and Yau T. M. (1999) Survival and function of bioengineered cardiac grafts. Circulation 100(19 Suppl.), II63–II69.

    CAS  Google Scholar 

  45. Zimmermann, W. H., Melnychenko, I., and Eschenhagen T. (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25, 1639–1647 (review).

    Article  CAS  Google Scholar 

  46. Shimizu, T., Yamato, M., Isoi, Y., Akutsu, T., Setomaru, T., Abe, K., Kikuchi, A., Umezu, M., and Okano T. (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40.

    Article  CAS  Google Scholar 

  47. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., and Prasher D. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  Google Scholar 

  48. Orlic, D., Hill, J. M., and Arai A. E. (2002) Stem cells for myocardial regeneration. Circ. Res. 91, 1092–1102 (review).

    Article  CAS  Google Scholar 

  49. Melton, L. (2005) Imaging: the big picture. Nature 437, 775–779.

    Article  CAS  Google Scholar 

  50. Saeed, M., Saloner, D., Weber, O., Martin, A., Henk, C., and Higgins, C. (2005) MRI in guiding and assessing intramyocardial therapy. Eur. Radiol. 15, 851–863.

    Article  CAS  Google Scholar 

  51. De, A. and Gambhir, S. S. (2005) Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J. 19, 2017–2019.

    CAS  Google Scholar 

  52. Rodriguez-Porcel, M., Gheysens, O., Chen, I. Y., Wu, J. C., and Gambhir, S. S. (2005) Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol. Ther. 12, 1142–1147.

    Article  CAS  Google Scholar 

  53. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (review).

    Article  CAS  Google Scholar 

  54. Wu, J. C., Chen, I. Y., Wang, Y., Tseng, J. R., Chhabra, A., Salek, M., Min, J. J., Fishbein, M. C., Crystal, R., and Gambhir, S. S. (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110, 685–691.

    Article  CAS  Google Scholar 

  55. Su, H., Forbes, A., Gambhir, S. S., and Braun, J. (2004) Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol. Imaging Biol. 6, 139–148.

    Article  Google Scholar 

  56. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., and Robbins, R. C. (2004) Haematopoietic stem cells adopt mature hematopoietic fates in ischemic myocardium. Nature 428, 668–673.

    Article  CAS  Google Scholar 

  57. Stein, P. D., Riddle, J. M., Kemp, S. R., Lee, M. W., Lewis, J. W., and Magilligan, D. J., Jr. (1985) Effect of warfarin on calcification of spontaneously degenerated porcine bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 90, 119–125.

    CAS  Google Scholar 

  58. Staab, M. E., Nishimura, R. A., Dearani, J. A., and Orszulak T. A. (1998) Aortic valve homografts in adults: a clinical perspective. Mayo Clin. Proc. 73, 231–238 (review).

    Article  CAS  Google Scholar 

  59. Neuenschwander, S. and Hoerstrup, S. P. (2004) Heart valve tissue engineering. Transpl. Immunol. 12, 359–365 (review).

    Article  CAS  Google Scholar 

  60. Grimm, M., Grabenwoger, M., Eybl, E., Moritz, A., Bock, P., Muller, M. M., and Wolner, E. (1992) Improved biocompatibility of bioprosthetic heart valves by L-glutamic acid treatment. J. Card. Surg. 7, 58–64.

    Article  CAS  Google Scholar 

  61. Leukauf, C., Szeles, C., Salaymeh, L., Grimm, M., Grabenwoger, M., Losert, U., Moritz, A., and Wolner, E. (1993) In vitro and in vivo endothelialization of glutaraldehyde treated bovine pericardium. J. Heart Valve Dis. 2, 230–235.

    CAS  Google Scholar 

  62. Steinhoff, G., Stock, U., Karim, N., Mertsching, H., Timke, A., Meliss, R. R., Pethig, K., Haverich, A., and Bader A. (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(19 Suppl. 3), III50–III55.

    CAS  Google Scholar 

  63. Stock, U. A., Nagashima, M., Khalil, P. N., Nollert, G. D., Herden, T., Sperling, J. S., Moran, A., Lien, J., Martin, D. P., Schoen, F. J., Vacanti, J. P., and Mayer, J. E., Jr. (2000) Tissue-engineered valved conduits in the pulmonary circulation. J. Thorac. Cardiovasc. Surg. 119 (4 Pt 1), 732–740.

    Article  CAS  Google Scholar 

  64. Schenke-Layland, K., Vasilevski, O., Opitz, F., Konig, K., Riemann, I., Halbhuber, K. J., Wahlers, T., and Stock, U. A. (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J. Struct. Biol. 143, 201–208.

    Article  CAS  Google Scholar 

  65. Schenke-Layland, K., Opitz, F., Gross, M., Doring, C., Halbhuber, K. J., Schirrmeister, F., Wahlers, T., and Stock, U. A. (2003) Complete dynamic repopulation of decellularized heart valves by application of defined physical signals – an in vitro study. Cardiovasc. Res. 60, 497–509.

    Article  CAS  Google Scholar 

  66. Korossis, S. A., Booth, C., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Fisher J., and Ingham, E. (2002) Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J. Heart Valve Dis. 11, 463–471.

    Google Scholar 

  67. Zhao, D. E., Li, R. B., Liu, W. Y., Wang, G., Yu, S. Q., Zhang, C. W., Chen, W. S., and Zhou, G. X. (2003) Tissue-engineered heart valve on acellular aortic valve scaffold: in-vivo study. Asian Cardiovasc. Thorac. Ann. 11, 53–56.

    Google Scholar 

  68. Konertz, W., Dohmen, P. M., Liu, J., Beholz, S., Dushe, S., Posner, S., Lembcke, A., and Erdbrugger, W. (2005) Hemodynamic characteristics of the matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. J. Heart Valve Dis. 14, 78–81.

    Google Scholar 

  69. Stock, U. A., Skamoto, T., Hatsuoka, S., Martin, D. P., Nagashima, M., Moran, A., Moses, M. A, Khalil, P. N., Schoen, F. J., Vacanti, J. P., and Mayer, J. E. (2000) Patch augmentation of the pulmonary artery using autologous cells and biodegradable polymers. J. Thorac. Cardiovasc. Surg. 120, 1158–1168.

    Article  CAS  Google Scholar 

  70. Rieder, E., Seebacher, G., Kasimir, M. T., Eichmair, E., Winter, B., Dekan, B., Wolner, E., Simon, P., and Weigel, G. (2005) Tissue engineering of heart valves: decellularized porcine and human valvescaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111, 2792–2797.

    Article  Google Scholar 

  71. Sodian, R., Sperling, J. S., Martin, D. P., Egozy, A., Stock, U., Mayer, J. E., Jr., and Vacanti, J. P. (2000) Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 6, 183–188.

    Article  CAS  Google Scholar 

  72. Masters, K. S., Shah, D. N., Walker, G., Leinwand, L. A., and Anseth K. S. (2004) Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. A. 71, 172–180.

    Article  Google Scholar 

  73. Sutherland, F. W., Perry, T. E., Yu, Y., Sherwood, M. C., Rabkin, E., Masuda, Y., Garcia, G. A., McLellan, D. L., Engelmayr, G. C., Jr., Sacks, M. S., Schoen, F. J., and Mayer, J. E., Jr. (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111, 2783–2791.

    Article  Google Scholar 

  74. Ramamurthi, A. and Vesely, I. (2005) Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials 26, 999–1010.

    Article  CAS  Google Scholar 

  75. Mol, A., Driessen, N. J., Rutten, M. C., Hoerstrup, S. P., Bouten, C. V., and Baaijens, F. P. (2005) Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33, 1778–1788.

    Article  Google Scholar 

  76. L’Heureux, N., Dusserre, N., Konig, G., victor, B., Keire, P., Wight, T.N., Chronos, N.A., kyles, A.E., Gregory, C.R., Hoyt, G., Robbins, R.C., and McAllistu T.N. (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat.Med. (12), 361–365.

    Article  Google Scholar 

  77. Isenberg, B. C., Williams, C., and Tranquillo, R. T. (2006) Small-diameter artificial arteries engineered in vitro. Circ. Res. 98, 25–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Kofidis, T., Müller-Stahl, K., Haverich, A. (2007). Myocardial Restoration and Tissue Engineering of Heart Structures. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics