Skip to main content

Artificial Skin

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Replacement of skin has been one of the most challenging aims for surgeons ever since the introduction of skin grafts in 1871. It took more than one century until the breakthrough of Rheinwald and Green in 1975 that opened new possibilities of skin replacement. The combination of cell culture and polymer chemistry finally led to the field of tissue engineering. Many researchers all over the world have been fascinated by the chance of creating a skin-like substitute ex vivo without any further harm to the patients, especially those with massive burns. Many different approaches to create new substitutes and further improvements in genetical and stem cell research led to today’s skin equivalents. But still, the “gold standard” for wound coverage is the autologous split-thickness skin graft. Future research will aim at originating biologically and physiologically equal skin substitutes for the treatment of severe burns and chronic ulcers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rheinwald, J. G. and Green H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–344.

    Article  CAS  Google Scholar 

  2. Jones, I., Currie, L., and Martin, R. (2002) A guide to biological skin substitutes. Br. J. Plast. Surg. 55, 185–193.

    Article  CAS  Google Scholar 

  3. Boyce, S. T. (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27, 523–533.

    Article  CAS  Google Scholar 

  4. Ljunggren, C. A. (1898) Von der Fähigkeit des Hautepithels, ausserhalb des Organismus sein Leben zu erhalten, mit Berücksichtigung der Transplantation. Deutsch Z. Chir. 47, 608–615.

    Google Scholar 

  5. Carrel, A. and Burrows, M. T. (1910) Cultivation of adult tissues and organs outside the body. JAMA 1379–1384.

    Google Scholar 

  6. Hadda, S. (1912) Die Kultur lebender Zellen. Klein Wschr. 49, 11–19.

    Google Scholar 

  7. Kreibich, K. (1914) Kultur erwachsener Haut auf festem Nährboden. Arch. Dermatol. Syph. 120, 168–178.

    Article  CAS  Google Scholar 

  8. Mangoldt, V. F. (1895) Die Überhäutung von Wundflächen und Wundhöhlen durch Epithelaussaat, eine neue Methode der Transplantation. Deut. Med. Wschr. 798–799.

    Google Scholar 

  9. Poumay, Y. and Pittelkow, M. R. (1995) Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J. Invest. Dermatol. 104(2), 271–276.

    Article  CAS  Google Scholar 

  10. Pellegrini, G., Ranno, R., Stracuzzi, G., Bondanza, S., Guerra, L., Zambruno, G., Micali, G., and de Luca, M. (1999) The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68, 868–879.

    Article  CAS  Google Scholar 

  11. Gallico, G. G., O’Connor, N. E., Compton, C. C., Kehinde, O., and Green, H. (1984) Permanent coverage of large burn wounds with autologous cultured epithelium. N. Engl. J. Med. 311, 448–451.

    Article  Google Scholar 

  12. Compton, C. C., Gill, J. M., Bradford, D. A., Regauer, S., Gallico, G. G., and O’Connor, N. E. (1989) Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. Lab. Invest. 60, 600–612.

    CAS  Google Scholar 

  13. Odessey, R. (1992) Addendum: multicenter experience with cultured epidermal autograft for treatment of burns. J. Burn Care Rehabil. 13, 174–180.

    Article  CAS  Google Scholar 

  14. Cuono, C., Langdon, R., and McGuire, J. (1986) Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1, 1123–1124.

    Article  CAS  Google Scholar 

  15. Rue, L. W., Cioffi, W. G., McManus, W. F., and Pruitt, B. A. (1993) Wound closure and outcome in extensively burned patients treated with cultured autologous keratinocytes. J. Trauma 34, 662–668.

    Article  Google Scholar 

  16. Herndon, D. N. and Rutan, R. L. (1992) Comparison of cultured epidermal autograft and massive excision with serial autografting plus homograft overlay. J. Burn Care Rehabil. 13, 154–157.

    Article  CAS  Google Scholar 

  17. Woodley, D. T., Peterson, H. D., Herzog, S. R., Stricklin, G. P., Burgeson, R. E., Briggaman, R. A., Cronce, D. J., and O’Keefe, E. J. (1988) Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA 259, 2566–2571.

    Article  CAS  Google Scholar 

  18. Putland, M., Snelling, C. F. T., MacDonald, I., and Tron, V. A. (1995) Histologic comparison of cultured epithelial autograft and meshed expanded split-thickness skin graft. J. Burn Care Rehabil. 16, 627–640.

    Article  CAS  Google Scholar 

  19. Poumay, Y., Roland, I. H., Leclerq-Smekens, M., and Lelouop, R. (1994) Basal detachment of the epidermis using dispase: tissue spatial organization and fate of integrin α 6β 4 and hemidesmosomes. J. Invest. Dermatol. 102, 111–117.

    Article  CAS  Google Scholar 

  20. Leary, T., Jones, L., Appleby, M., Blight, A., Parkinson, K., and Stanley, M. (1991) Epidermal keratinocyte self-renewal is dependent upon dermal integrity. J. Invest. Dermatol. 99, 422.

    Article  Google Scholar 

  21. Rennekampff, H. O., Kiessig, V., and Hansbrough, J. F. (1996) Research review: current concepts in the development of cultured skin substitutes. J. Surg. Res. 62, 288–295.

    Article  CAS  Google Scholar 

  22. Rennekampff, H. O., Kiessig, V., Griffey, S., Greenleaf, G., and Hansbrough, J. F. (1997) Acellular human dermis promotes cultured keratinocyte engraftment. J. Burn Care Rehabil. 18, 535–544.

    Article  CAS  Google Scholar 

  23. Loss, M., Wedler, V., Künzi, W., Meuli-Simmen, C., and Meyer, V. E. (2000) Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26, 644–652.

    Article  CAS  Google Scholar 

  24. Stark, G. B. and Kaiser, H. W. (1994) Cologne burn centre experiences with glycerol-preserved allogenic skin: part II: combination with autologous cultured keratinocytes. Burns 20, 34–38.

    Article  Google Scholar 

  25. Stark, G. B., Kaiser, H. W., Horch, R., Kopp, and J., Spilker, G. (1995) Cultured autologous keratinocytes suspended in fibrin glue (KFGS) with allogenic overgraft for definitive burn wound coverage. Eur. J. Plast. Surg. 18, 267–271.

    Article  Google Scholar 

  26. Supp, D. M. and Boyce, S. T. (2005) Engineered skin substitutes: practices and potentials. Clin. Dermatol. 23, 403–412.

    Article  Google Scholar 

  27. Lee, Y. S., Yuspa, S. H., and Dlugosz, A. A. (1998) Differentiation of cultured human epidermal keratinocytes at high cell densities is mediated by endogenous activation of the protein kinase C signaling pathway. J. Invest. Dermatol. 111(5), 762–766.

    Article  CAS  Google Scholar 

  28. Juhasz, I., Murphy, G. F., Yan, H. C., Herlyn, M., and Albelda, S. M. (1993) Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am. J. Pathol. 143, 1458–1469.

    CAS  Google Scholar 

  29. Wood, F. (2001) The first 7 years of the west Australian skin culture laboratory, in Cultured Human Keratinocytes and Tissue Engineered Skin Substitutes, 1st edition (Horch, R. E., Munster, A. M., and Achauer, B. M., eds), Thieme, Stuttgart, pp. 275–283.

    Google Scholar 

  30. Fraulin, F. O. G., Bahoric, A., Harrop, A. R., Hiruki, T., Clarke, H. M. (1998) Autotransplantation of epithelial cells in the pig via an aerosol vehicle. J. Burn Care Rehabil. 19, 337–345.

    Article  CAS  Google Scholar 

  31. Adant, J. P., Detroz, B., D’Silva, M., Natowitz, L., Ledoux, M., Pestiaux, and B., Leclercq, P. (1993) Skin grafting with fibrin glue in burns. Eur. J. Plast. Surg. 16, 292–297.

    Article  Google Scholar 

  32. Currie, L. J., Sharpe, J. R., and Martin, R. (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast. Reconstr. Surg. 108, 1713–1726.

    Article  CAS  Google Scholar 

  33. Clark, R. A. F., Lanigan, J. M., Dellapelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B. (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J. Invest. Dermatol. 79, 264–269.

    Article  CAS  Google Scholar 

  34. Geer, D. J., Swartz, D. D., and Andreadis, S. T. (2002) Fibrin promotes migration in a three-dimensional in vitro model of wound regeneration. Tiss. Eng. 8(5), 787–798.

    Article  CAS  Google Scholar 

  35. Horch, R., Bannasch, H., Kopp, J., Andree, C., and Stark, G. B. (1998) Single-cell-suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant. 7(3), 309–317.

    Article  CAS  Google Scholar 

  36. Bannasch, H., Horch, R. E., Tanczos, E., and Stark, G. B. (2000) Behandlung chronischer Wunden mit kultivierten autologen Keratinozyten als Suspension in Fibrinkleber. Zentralbl. Chir. 125(1), 79–81.

    Google Scholar 

  37. Hansbrough, J. F., Morgan, J., Greenleaf, G., Parikh, M., Nolte, C., and Wilkins, L. (1994) Evaluation of graftskin composite grafts on full-thickness wounds on athymic mice. J. Burn Care Rehabil. 15(4), 346–353.

    Article  CAS  Google Scholar 

  38. Boyce, S. T., Goretsky, M. J., Greenhalgh, D. G., Kagan, R. J., Rieman, M. T., and Warden, G. D. (1995) Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann. Surg. 222, 743–752.

    Article  CAS  Google Scholar 

  39. Medalie, D. A., Eming, S. A., Tompkins, R. G., Yarmush, M. L., Krueger, G. G., and Morgan, J. R. (1996) Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107, 121–127.

    Article  CAS  Google Scholar 

  40. Kopp, J., Bannasch, H., Andree, C., and Stark, G. B. (1996) Kultivierte Keratinozyten auf einem Silikon-Kollagen-Matrix-Träger zur Deckung von Vollhautdefekten. Langenbecks Arch. Chir. (Suppl. I), 299.

    Google Scholar 

  41. Ronfard, V., Broly, H., Mitchell, V., Galizia, J. P., Hochart, D., Chambon, E., Pellerin, P., and Huart, J. J. (1991) Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds. Burns 17, 181–184.

    Article  CAS  Google Scholar 

  42. Bohnert, A., Hornung, J., Mackenzie, I. C., and Fusenig, N. E. (1986) Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes. Cell Tissue Res. 244, 413–429.

    Article  CAS  Google Scholar 

  43. Cooper, M. L., Andree, C., Hansbrough, J. F., Zapata-Sirvent, R. L., and Spielvogel, R. (1993) Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J. Invest. Dermatol. 101, 811–819.

    Article  CAS  Google Scholar 

  44. Livesey, S. A., Herndon, D. N., Holloyak, M. A., Atkinson, Y. H., and Nag, A. (1995) Transplanted acellular allograft dermal matrix. Potential as a template for the reconstruction of viable dermis. Transplantation 60, 1–9.

    Article  CAS  Google Scholar 

  45. Horch, R. E., Kopp, J., Kneser, U., Beier, J., and Bach, A. D. (2005) Tissue engineering of cultured skin substitutes. J. Cell Mol. Med. 9, 592–608.

    Article  Google Scholar 

  46. Boyce, S. T., Kagan, R. J., Yakuboff, K. P., Meyer, N. A., Rieman M. T., Greenhalgh, D. G., and Warden, G. D. (2002) Cultured skin substitutes reduce donor skin harvesting for closure of excised, full thickness burns. Ann. Surg. 2, 269–279.

    Article  Google Scholar 

  47. Wainwright, D. J. (1995) Use of an acellular dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21, 243–248.

    Article  CAS  Google Scholar 

  48. Andreassi, L. (1992) History of keratinocytes cultivation. Burns 18, S2–S4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Föhn, M., Bannasch, H. (2007). Artificial Skin. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics